6.4
 Vectors and Dot Products

What you should learn

- Find the dot product of two vectors and use the properties of the dot product.
- Find the angle between two vectors and determine whether two vectors are orthogonal.
- Write a vector as the sum of two vector components.
- Use vectors to find the work done by a force.

Why you should learn it

You can use the dot product of two vectors to solve real-life problems involving two vector quantities. For instance, in Exercise 76 on page 466, you can use the dot product to find the force necessary to keep a sport utility vehicle from rolling down a hill.

The Dot Product of Two Vectors

So far you have studied two vector operations-vector addition and multiplication by a scalar-each of which yields another vector. In this section, you will study a third vector operation, the dot product. This product yields a scalar, rather than a vector.

Definition of the Dot Product

The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}
$$

Properties of the Dot Product

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be vectors in the plane or in space and let c be a scalar.

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{0} \cdot \mathbf{v}=0$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
5. $c(\mathbf{u} \cdot \mathbf{v})=c \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot c \mathbf{v}$

For proofs of the properties of the dot product, see Proofs in Mathematics on page 490.

Example 1 Finding Dot Products

Find each dot product.
a. $\langle 4,5\rangle \cdot\langle 2,3\rangle$
b. $\langle 2,-1\rangle \cdot\langle 1,2\rangle$
c. $\langle 0,3\rangle \cdot\langle 4,-2\rangle$

Solution

a. $\langle 4,5\rangle \cdot\langle 2,3\rangle=4(2)+5(3)$

$$
=8+15
$$

$$
=23
$$

b. $\langle 2,-1\rangle \cdot\langle 1,2\rangle=2(1)+(-1)(2)$

$$
=2-2=0
$$

c. $\langle 0,3\rangle \cdot\langle 4,-2\rangle=0(4)+3(-2)$

$$
=0-6=-6
$$

CHECKPoint Now try Exercise 7.
In Example 1, be sure you see that the dot product of two vectors is a scalar (a real number), not a vector. Moreover, notice that the dot product can be positive, zero, or negative.

Example 2 Using Properties of Dot Products

Let $\mathbf{u}=\langle-1,3\rangle, \mathbf{v}=\langle 2,-4\rangle$, and $\mathbf{w}=\langle 1,-2\rangle$. Find each dot product.
a. $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
b. $\mathbf{u} \cdot 2 \mathrm{v}$

Solution

Begin by finding the dot product of \mathbf{u} and \mathbf{v}.

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\langle-1,3\rangle \cdot\langle 2,-4\rangle \\
& =(-1)(2)+3(-4) \\
& =-14
\end{aligned}
$$

a. $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}=-14\langle 1,-2\rangle$

$$
=\langle-14,28\rangle
$$

b. $\mathbf{u} \cdot 2 \mathbf{v}=2(\mathbf{u} \cdot \mathbf{v})$

$$
\begin{aligned}
& =2(-14) \\
& =-28
\end{aligned}
$$

Notice that the product in part (a) is a vector, whereas the product in part (b) is a scalar. Can you see why?
CHECKPoint Now try Exercise 17.

Example 3 Dot Product and Magnitude

The dot product of \mathbf{u} with itself is 5 . What is the magnitude of \mathbf{u} ?

Solution

Because $\|\mathbf{u}\|^{2}=\mathbf{u} \cdot \mathbf{u}$ and $\mathbf{u} \cdot \mathbf{u}=5$, it follows that

$$
\begin{aligned}
\|\mathbf{u}\| & =\sqrt{\mathbf{u} \cdot \mathbf{u}} \\
& =\sqrt{5} .
\end{aligned}
$$

CHECKPoint Now try Exercise 25.

The Angle Between Two Vectors

figure 6.33

The angle between two nonzero vectors is the angle $\theta, 0 \leq \theta \leq \pi$, between their respective standard position vectors, as shown in Figure 6.33. This angle can be found using the dot product.

Angle Between Two Vectors

If θ is the angle between two nonzero vectors \mathbf{u} and \mathbf{v}, then

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

For a proof of the angle between two vectors, see Proofs in Mathematics on page 490.

FIGURE 6.34

Example 4 Finding the Angle Between Two Vectors

Find the angle θ between $\mathbf{u}=\langle 4,3\rangle$ and $\mathbf{v}=\langle 3,5\rangle$.

Solution

The two vectors and θ are shown in Figure 6.34.

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|} \\
& =\frac{\langle 4,3\rangle \cdot\langle 3,5\rangle}{\|\langle 4,3\rangle\|\|\langle 3,5\rangle\|} \\
& =\frac{27}{5 \sqrt{34}}
\end{aligned}
$$

This implies that the angle between the two vectors is

$$
\theta=\arccos \frac{27}{5 \sqrt{34}} \approx 22.2^{\circ}
$$

CHECKPoint Now try Exercise 35.
Rewriting the expression for the angle between two vectors in the form

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \quad \text { Alternative form of dot product }
$$

produces an alternative way to calculate the dot product. From this form, you can see that because $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$ are always positive, $\mathbf{u} \cdot \mathbf{v}$ and $\cos \theta$ will always have the same sign. Figure 6.35 shows the five possible orientations of two vectors.

$$
\begin{aligned}
& \frac{\pi}{2}<\theta<\pi \\
& -1<\cos \theta<0 \\
& \text { Obtuse Angle }
\end{aligned}
$$

$\theta=\pi$
$\cos \theta=-1$

TECHNOLOGY The graphing utility program,

 Finding the Angle Between Two Vectors, found on the website for this text at academic.cengage.com, graphs two vectors $\mathbf{u}=\langle\boldsymbol{a}, \boldsymbol{b}\rangle$ and $\mathbf{v}=\langle c, d\rangle$ in standard position and finds the measure of the angle between them. Use the program to verify the solutions for Examples 4 and 5.
Example 5 Determining Orthogonal Vectors

Are the vectors $\mathbf{u}=\langle 2,-3\rangle$ and $\mathbf{v}=\langle 6,4\rangle$ orthogonal?

Solution

Find the dot product of the two vectors.

$$
\mathbf{u} \cdot \mathbf{v}=\langle 2,-3\rangle \cdot\langle 6,4\rangle=2(6)+(-3)(4)=0
$$

Because the dot product is 0 , the two vectors are orthogonal (see Figure 6.36).

figure 6.36
CHECKPoint Now try Exercise 53.

Finding Vector Components

You have already seen applications in which two vectors are added to produce a resultant vector. Many applications in physics and engineering pose the reverse problem-decomposing a given vector into the sum of two vector components.

Consider a boat on an inclined ramp, as shown in Figure 6.37. The force \mathbf{F} due to gravity pulls the boat down the ramp and against the ramp. These two orthogonal forces, \mathbf{w}_{1} and \mathbf{w}_{2}, are vector components of \mathbf{F}. That is,

$$
\mathbf{F}=\mathbf{w}_{1}+\mathbf{w}_{2} . \quad \text { Vector components of } \mathbf{F}
$$

The negative of component \mathbf{w}_{1} represents the force needed to keep the boat from rolling down the ramp, whereas \mathbf{w}_{2} represents the force that the tires must withstand against the ramp. A procedure for finding \mathbf{w}_{1} and \mathbf{w}_{2} is shown on the following page.

FIGURE 6.37

Definition of Vector Components

Let \mathbf{u} and \mathbf{v} be nonzero vectors such that

$$
\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}
$$

where \mathbf{w}_{1} and \mathbf{w}_{2} are orthogonal and \mathbf{w}_{1} is parallel to (or a scalar multiple of) \mathbf{v}, as shown in Figure 6.38. The vectors \mathbf{w}_{1} and \mathbf{w}_{2} are called vector components of \mathbf{u}. The vector \mathbf{w}_{1} is the projection of \mathbf{u} onto \mathbf{v} and is denoted by

$$
\mathbf{w}_{1}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}
$$

The vector \mathbf{w}_{2} is given by $\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1}$.

θ is acute.
figure 6.38

θ is obtuse.

From the definition of vector components, you can see that it is easy to find the component \mathbf{w}_{2} once you have found the projection of \mathbf{u} onto \mathbf{v}. To find the projection, you can use the dot product, as follows.

$$
\begin{aligned}
\mathbf{u} & =\mathbf{w}_{1}+\mathbf{w}_{2}=c \mathbf{v}+\mathbf{w}_{2} & & \mathbf{w}_{1} \text { is a scalar multiple of } \mathbf{v} . \\
\mathbf{u} \cdot \mathbf{v} & =\left(c \mathbf{v}+\mathbf{w}_{2}\right) \cdot \mathbf{v} & & \text { Take dot product of each side with } \mathbf{v} . \\
& =c \mathbf{v} \cdot \mathbf{v}+\mathbf{w}_{2} \cdot \mathbf{v} & & \\
& =c\|\mathbf{v}\|^{2}+0 & & \mathbf{w}_{2} \text { and } \mathbf{v} \text { are orthogonal. }
\end{aligned}
$$

So,

$$
c=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}
$$

and

$$
\mathbf{w}_{1}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}=c \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}
$$

Projection of \mathbf{u} onto \mathbf{v}

Let \mathbf{u} and \mathbf{v} be nonzero vectors. The projection of \mathbf{u} onto \mathbf{v} is

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v}
$$

Example 6 Decomposing a Vector into Components

FIGURE 6.39

FIGURE 6.40

Find the projection of $\mathbf{u}=\langle 3,-5\rangle$ onto $\mathbf{v}=\langle 6,2\rangle$. Then write \mathbf{u} as the sum of two orthogonal vectors, one of which is $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Solution

The projection of \mathbf{u} onto \mathbf{v} is

$$
\mathbf{w}_{1}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v}=\left(\frac{8}{40}\right)\langle 6,2\rangle=\left\langle\frac{6}{5}, \frac{2}{5}\right\rangle
$$

as shown in Figure 6.39. The other component, \mathbf{w}_{2}, is

$$
\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1}=\langle 3,-5\rangle-\left\langle\frac{6}{5}, \frac{2}{5}\right\rangle=\left\langle\frac{9}{5},-\frac{27}{5}\right\rangle
$$

So,

$$
\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}=\left\langle\frac{6}{5}, \frac{2}{5}\right\rangle+\left\langle\frac{9}{5},-\frac{27}{5}\right\rangle=\langle 3,-5\rangle
$$

CHECKPoint Now try Exercise 59.

Example 7 Finding a Force

A 200-pound cart sits on a ramp inclined at 30°, as shown in Figure 6.40. What force is required to keep the cart from rolling down the ramp?

Solution

Because the force due to gravity is vertical and downward, you can represent the gravitational force by the vector

$$
\mathbf{F}=-200 \mathbf{j} . \quad \text { Force due to gravity }
$$

To find the force required to keep the cart from rolling down the ramp, project \mathbf{F} onto a unit vector \mathbf{v} in the direction of the ramp, as follows.

$$
\mathbf{v}=\left(\cos 30^{\circ}\right) \mathbf{i}+\left(\sin 30^{\circ}\right) \mathbf{j}=\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j} \quad \text { Unit vector along ramp }
$$

Therefore, the projection of \mathbf{F} onto \mathbf{v} is

$$
\begin{aligned}
\mathbf{w}_{1} & =\operatorname{proj}_{\mathbf{v}} \mathbf{F} \\
& =\left(\frac{\mathbf{F} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v} \\
& =(\mathbf{F} \cdot \mathbf{v}) \mathbf{v} \\
& =(-200)\left(\frac{1}{2}\right) \mathbf{v} \\
& =-100\left(\frac{\sqrt{3}}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}\right)
\end{aligned}
$$

The magnitude of this force is 100 , and so a force of 100 pounds is required to keep the cart from rolling down the ramp.
CHECKPoint Now try Exercise 75.

Work

The work W done by a constant force \mathbf{F} acting along the line of motion of an object is given by

$$
W=(\text { magnitude of force })(\text { distance })=\|\mathbf{F}\|\|\stackrel{\rightharpoonup}{P Q}\|
$$

as shown in Figure 6.41. If the constant force \mathbf{F} is not directed along the line of motion, as shown in Figure 6.42, the work W done by the force is given by

$$
\begin{aligned}
W & =\left\|\operatorname{proj}_{\overrightarrow{P Q}} \mathbf{F}\right\|\|\overrightarrow{P Q}\| & & \text { Projection form for work } \\
& =(\cos \theta)\|\mathbf{F}\|\|\overrightarrow{P Q}\| & & \left\|\operatorname{proj}_{\overrightarrow{P Q}} \mathbf{F}\right\|=(\cos \theta)\|\mathbf{F}\| \\
& =\mathbf{F} \cdot \overrightarrow{P Q} . & & \text { Alternative form of dot product }
\end{aligned}
$$

Force acts along the line of motion. FIGURE 6.41

Force acts at angle θ with the line of motion. figure 6.42

This notion of work is summarized in the following definition.

Definition of Work

The work W done by a constant force \mathbf{F} as its point of application moves along the vector $\stackrel{\rightharpoonup}{P Q}$ is given by either of the following.

1. $W=\left\|\operatorname{proj}_{\overrightarrow{P Q}} \mathbf{F}\right\|\|\overrightarrow{P Q}\| \quad$ Projection form
2. $W=\mathbf{F} \cdot \stackrel{\rightharpoonup}{P Q} \quad$ Dot product form

Example 8 Finding Work

To close a sliding barn door, a person pulls on a rope with a constant force of 50 pounds at a constant angle of 60°, as shown in Figure 6.43. Find the work done in moving the barn door 12 feet to its closed position.

Solution

Using a projection, you can calculate the work as follows.

$$
\begin{aligned}
W & =\left\|\operatorname{proj}_{\overrightarrow{P Q}} \mathbf{F}\right\|\|\stackrel{\rightharpoonup}{P Q}\| \quad \text { Projection form for work } \\
& =\left(\cos 60^{\circ}\right)\|\mathbf{F}\|\|\stackrel{\rightharpoonup}{P Q}\| \\
& =\frac{1}{2}(50)(12)=300 \text { foot-pounds }
\end{aligned}
$$

So, the work done is 300 foot-pounds. You can verify this result by finding the vectors F and $\overrightarrow{P Q}$ and calculating their dot product.
CHECKPoint Now try Exercise 79.

