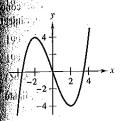
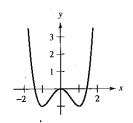

EXERCISES FOR SECTION 3.3

Intercises 1-10, identify the open intervals on which the func-(tonis increasing or decreasing.


$$1.7(x) = x^2 - 6x + 8$$


2.
$$y = -(x+1)^2$$

$$y = \frac{x^3}{4} - 3x$$

$$4. \ f(x) = x^4 - 2x^2$$

$$f(x) = \frac{1}{x^2}$$

$$g(x) = x^2 - 2x - 8$$

$$y_{10} = x\sqrt{16 - x^2}$$

6.
$$y = \frac{x^2}{x+1}$$

8.
$$h(x) = 27x - x^3$$

10.
$$y = x + \frac{4}{x}$$

His Exercises 11–32, find the critical numbers of f (if any). Find the open intervals on which the function is increasing or decreasing and locate all relative extrema. Use a graphing ufflity to confirm your results.

$$\prod_{x}^{Re} f(x) = x^2 - 6x$$

$$13 f(x) = -2x^2 + 4x + 3$$

$$\int f(x) = 2x^3 + 3x^2 - 12x$$

$$\prod_{0 \le x \le 2} f(x) = x^2(3-x)$$

$$19. f(x) = \frac{x^5 - 5x}{5}$$

$$21 f(x) = x^{1/3} + 1$$

$$23. f(x) = (x - 1)^{2/3}$$

$$f(x) = (x - 1)^{2/3}$$

$$25 f(x) = 5 - |x - 5|$$

$$22 \int_{0}^{\infty} f(x) = x + \frac{1}{r}$$

$$22. f(x) = \frac{x^2}{x^2 - 9}$$

$$\int \int f(x) = \frac{x^2 - 2x + 1}{x + 1}$$

12.
$$f(x) = x^2 + 8x + 10$$

14.
$$f(x) = -(x^2 + 8x + 12)$$

16.
$$f(x) = x^3 - 6x^2 + 15$$

16.
$$f(x) = x^3 - 6x^2 + 15$$

18.
$$f(x) = (x + 2)^2(x - 1)$$

20.
$$f(x) = x^4 - 32x + 4$$

22.
$$f(x) = x^{2/3} - 4$$

24.
$$f(x) = (x-1)^{1/3}$$

26.
$$f(x) = |x + 3| - 1$$

28.
$$f(x) = \frac{x}{x+1}$$

30.
$$f(x) = \frac{x+3}{x^2}$$

32.
$$f(x) = \frac{x^2 - 3x - 4}{x - 2}$$

In Exercises 33 – 36, consider the function on the interval $(0, 2\pi)$. Find the open intervals on which the function is increasing or decreasing and locate all relative extrema. Use a graphing utility to confirm your results.

33.
$$f(x) = \frac{x}{2} + \cos x$$

$$34. \ f(x) = \sin x \cos x$$

35.
$$f(x)' = \sin^2 x + \sin x$$

35.
$$f(x) = \sin^2 x + \sin x$$
 36. $f(x) = \frac{\sin x}{1 + \cos^2 x}$

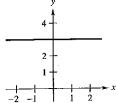
In Exercises 37–40, (a) use a computer algebra system to differentiate the function, (b) sketch the graphs of f and f' on the same set of coordinate axes over the indicated interval, (c) find the critical numbers of f in the open interval, and (d) find the interval(s) on which f' is positive and the interval(s) on which it is negative. Compare the behavior of f and the sign of f'.

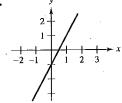
37.
$$f(x) = 2x\sqrt{9-x^2}, [-3, 3]$$

38.
$$f(x) = 10(5 - \sqrt{x^2 - 3x + 16}), [0, 5]$$

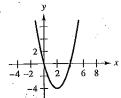
39.
$$f(t) = t^2 \sin t$$
, $[0, 2\pi]$

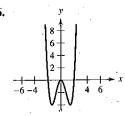
40.
$$f(x) = \frac{x}{2} + \cos \frac{x}{2}$$
, [0, 4 π]

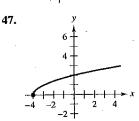

In Exercises 41 and 42, use symmetry, extrema, and zeros to sketch the graph of f. How do the functions f and g differ? Explain.


41.
$$f(x) = \frac{x^5 - 4x^3 + 3x}{x^2 - 1}$$
, $g(x) = x(x^2 - 3)$

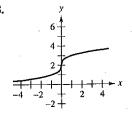
42.
$$f(t) = \cos^2 t - \sin^2 t$$
, $g(t) = 1 - 2\sin^2 t$, $(-2, 2)$


Think About It In Exercises 43-48, the graph of f is shown in the figure. Sketch a graph of the derivative of f. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.





45.



46.

48.

