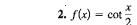
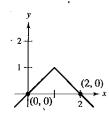
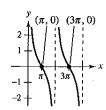
EXERCISES FOR SECTION

In Exercises 1 and 2, explain why Rolle's Theorem does not apply to the function even though there exist a and b such that f(a) = f(b).

1.
$$f(x) = 1 - |x - 1|$$







In Exercises 3–6, find the two x-intercepts of the function f and show that f'(x) = 0 at some point between the two intercepts.

3.
$$f(x) = x^2 - x - 2$$

4.
$$f(x) = x(x-3)$$

5.
$$f(x) = x\sqrt{x+4}$$

4.
$$f(x) = x(x-3)$$

6. $f(x) = -3x\sqrt{x+1}$

In Exercises 7-20, determine whether Rolle's Theorem can be applied to f on the closed interval [a,b]. If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f'(c) = 0.

7.
$$f(x) = x^2 - 2x, [0, 2]$$

7.
$$f(x) = x^2 - 2x$$
, [0, 2] 8. $f(x) = x^2 - 5x + 4$, [1, 4]

9.
$$f(x) = (x-1)(x-2)(x-3)$$
, [1, 3]

10.
$$f(x) = (x - 3)(x + 1)^2, [-1, 3]$$

11.
$$f(x) = x^{2/3} - 1, [-8, 8]$$

12.
$$f(x) = 3 - |x - 3|, [0, 6]$$

13.
$$f(x) = \frac{x^2 - 2x - 3}{x + 2}$$
, $[-1, 3]$ **14.** $f(x) = \frac{x^2 - 1}{x}$, $[-1, 1]$

14.
$$f(x) = \frac{x^2 - 1}{1}, [-1, 1]$$

15.
$$f(x) = \sin x, [0, 2\pi]$$

16.
$$f(x) = \cos x$$
, $[0, 2\pi]$

17.
$$f(x) = \frac{6x}{\pi} - 4\sin^2 x$$
, $\left[0, \frac{\pi}{6}\right]$

17.
$$f(x) = \frac{6x}{\pi} - 4\sin^2 x$$
, $\left[0, \frac{\pi}{6}\right]$ 18. $f(x) = \cos 2x$, $\left[-\frac{\pi}{12}, \frac{\pi}{6}\right]$

19.
$$f(x) = \tan x, [0, \pi]$$

19.
$$f(x) = \tan x, [0, \pi]$$
 20. $f(x) = \sec x, \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$

In Exercises 21–24, use a graphing utility to graph the function on the closed interval [a, b]. Determine whether Rolle's Theorem can be applied to f on the interval and, if so, find all values of c in the open interval (a, b) such that f'(c) = 0.

21.
$$f(x) = |x| - 1, [-1, 1]$$

22.
$$f(x) = x - x^{1/3}, [0, 1]$$

23.
$$f(x) = 4x - \tan \pi x, \left[-\frac{1}{4}, \frac{1}{4} \right]$$

24.
$$f(x) = \frac{x}{2} - \sin \frac{\pi x}{6}, [-1, 0]$$

- 25. Vertical Motion The height of a ball t seconds after it is thrown upward from a height of 32 feet and with an initial velocity of 48 feet per second is $f(t) = -16t^2 + 48t + 32$.
 - (a) Verify that f(1) = f(2).
 - (b) According to Rolle's Theorem, what must be the velocity at some time in the interval (1, 2)? Find that time.

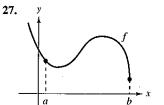
26. Reorder Costs The ordering and transportation cost C of components used in a manufacturing process is approximated by

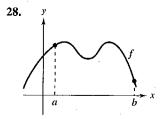
$$C(x) = 10\left(\frac{1}{x} + \frac{x}{x+3}\right)$$

where C is measured in thousands of dollars and x is the order size in hundreds.

- (a) Verify that C(3) = C(6).
- (b) According to Rolle's Theorem, the rate of change of cost must be 0 for some order size in the interval (3, 6). Find that order size.

In Exercises 27 and 28, copy the graph and sketch the secant line to the graph through the points (a, f(a)) and (b, f(b)). Then sketch any tangent lines to the graph for each value of c guaranteed by the Mean Value Theorem. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.





In Exercises 29 and 30, explain why the Mean Value Theorem does not apply to the function on the interval [0, 6].

29.
$$f(x) = \frac{1}{x-3}$$

30.
$$f(x) = |x - 3|$$

In Exercises 31-38, determine whether the Mean Value Theorem can be applied to f on the closed interval [a, b]. If the Mean Value Theorem can be applied, find all values of c in the open interval (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

31.
$$f(x) = x^2$$
, [-2, 1]

32.
$$f(x) = x(x^2 - x - 2), [-1, 1]$$

33.
$$f(x) = x^{2/3}, [0, 1]$$

34.
$$f(x) = \frac{x+1}{x}$$
, $\left[\frac{1}{2}, 2\right]$

35.
$$f(x) = \sqrt{2-x}$$
, $[-7, 2]$ **36.** $f(x) = x^3$, $[0, 1]$

36.
$$f(x) = \dot{x}^3$$
, [0, 1]

37.
$$f(x) = \sin x$$
, $[0, \pi]$

38.
$$f(x) = 2 \sin x + \sin 2x$$
, $[0, \pi]$

In Exercises 39-42, use a graphing utility to (a) graph the function f on the indicated interval, (b) find and graph the secant line through points on the graph of f at the endpoints of the indicated interval, and (c) find and graph any tangent lines to the graph of f that are parallel to the secant line.

39.
$$f(x) = \frac{x}{x+1}$$
, $\left[-\frac{1}{2}, 2\right]$ **40.** $f(x) = x-2\sin x$, $\left[-\pi, \pi\right]$

40.
$$f(x) = x - 2 \sin x$$
, $[-\pi, \pi]$

41.
$$f(x) = \sqrt{x}$$
, [1, 9]

42.
$$f(x) = -x^4 + 4x^3 + 8x^2 + 5$$
. [0, 5]