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Limits at Infinity and Horizontal Asymptotes
As pointed out at the beginning of this chapter, there are two basic problems in calculus:
finding tangent lines and finding the area of a region. In Section 12.3, you saw how
limits can be used to solve the tangent line problem. In this section and the next, you
will see how a different type of limit, a limit at infinity, can be used to solve the area
problem. To get an idea of what is meant by a limit at infinity, consider the function
given by

The graph of is shown in Figure 12.30. From earlier work, you know that is a
horizontal asymptote of the graph of this function. Using limit notation, this can be
written as follows.

Horizontal asymptote to the left

Horizontal asymptote to the right

These limits mean that the value of gets arbitrarily close to as decreases or
increases without bound.

FIGURE 12.30
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12.4 LIMITS AT INFINITY AND LIMITS OF SEQUENCES

What you should learn
• Evaluate limits of functions at 

infinity.
• Find limits of sequences.

Why you should learn it
Finding limits at infinity is useful in
many types of real-life applications.
For instance, in Exercise 58 on page
889, you are asked to find a limit at
infinity to determine the number of 
military reserve personnel in the
future.
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Definition of Limits at Infinity
If is a function and and are real numbers, the statements

Limit as approaches 

and

Limit as approaches 

denote the limits at infinity. The first statement is read “the limit of as 
approaches is ” and the second is read “the limit of as approaches

is ”L2.!
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The function is

a rational function. You can
review rational functions in
Section 2.6.
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To help evaluate limits at infinity, you can use the following definition.

Limits at infinity share many of the properties of limits listed in Section 12.1. Some
of these properties are demonstrated in the next example.

Limits at Infinity
If is a positive real number, then

Limit toward the right

Furthermore, if is defined when then

Limit toward the leftlim
x→#!

1
xr " 0.

x < 0,xr

lim
x→!

1
xr " 0.

r

Evaluating a Limit at Infinity

Find the limit.

lim
x→! #4 #

3
x2$

Example 1

Algebraic Solution
Use the properties of limits listed in Section 12.1.

So, the limit of as approaches is 4.

Now try Exercise 9.
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Graphical Solution
Use a graphing utility to graph Then use the trace
feature to determine that as gets larger and larger, gets closer and
closer to 4, as shown in Figure 12.31. Note that the line is a
horizontal asymptote to the right.

FIGURE 12.31
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In Figure 12.31, it appears that the line is also a horizontal asymptote to the
left. You can verify this by showing that

The graph of a rational function need not have a horizontal asymptote. If it does,
however, its left and right horizontal asymptotes must be the same.

When evaluating limits at infinity for more complicated rational functions, divide
the numerator and denominator by the highest-powered term in the denominator. This
enables you to evaluate each limit using the limits at infinity at the top of this page.

lim
x→#!#4 #

3
x2$ " 4.

y " 4
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Comparing Limits at Infinity

Find the limit as approaches for each function.

a. b. c.

Solution
In each case, begin by dividing both the numerator and denominator by the 
highest-powered term in the denominator.

a.

b.

c.

In this case, you can conclude that the limit does not exist because the numerator
decreases without bound as the denominator approaches 3.

Now try Exercise 19.

In Example 2, observe that when the degree of the numerator is less than the degree
of the denominator, as in part (a), the limit is 0. When the degrees of the numerator and
denominator are equal, as in part (b), the limit is the ratio of the coefficients of the 
highest-powered terms. When the degree of the numerator is greater than the degree of
the denominator, as in part (c), the limit does not exist.

This result seems reasonable when you realize that for large values of the 
highest-powered term of a polynomial is the most “influential” term. That is, a polynomial
tends to behave as its highest-powered term behaves as approaches positive or 
negative infinity.
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Finding the Average Cost

You are manufacturing greeting cards that cost $0.50 per card to produce. Your initial
investment is $5000, which implies that the total cost of producing cards is given
by The average cost per card is given by

Find the average cost per card when (a) (b) and (c) 
(d) What is the limit of as approaches infinity?

Solution

a. When the average cost per card is

b. When the average cost per card is

c. When the average cost per card is

d. As approaches infinity, the limit of is

The graph of is shown in Figure 12.32.

Now try Exercise 55.
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Example 3

Limits at Infinity for Rational Functions
Consider the rational function where

and

The limit of as approaches positive or negative infinity is as follows.

If the limit does not exist.n > m,
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Limits of Sequences
Limits of sequences have many of the same properties as limits of functions. For
instance, consider the sequence whose th term is 

As increases without bound, the terms of this sequence get closer and closer to 0, and
the sequence is said to converge to 0. Using limit notation, you can write

The following relationship shows how limits of functions of can be used to evaluate
the limit of a sequence.

A sequence that does not converge is said to diverge. For instance, the terms of the
sequence oscillate between 1 and Therefore, the sequence
diverges because it does not approach a unique number.

Finding the Limit of a Sequence

Find the limit of each sequence. (Assume begins with 1.)

a.

b.

c.

Solution

a.

b.

c.

Now try Exercise 39.
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#1.1, #1, 1, #1, 1, .  .  .

x

lim
n→!

1
2n " 0.

n

1
2

,
1
4

,
1
8

,
1

16
,

1
32

, .  .  .

an " 1%2n.n

Limit of a Sequence
Let be a function of a real variable such that

If is a sequence such that for every positive integer then

lim
n→!

an " L.

n,f !n" " an'an(
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f

You can use the definition of
limits at infinity for rational
functions on page 884 to verify
the limits of the sequences in
Example 4.

You can review sequences in
Sections 9.1– 9.3.

TECHNOLOGY

There are a number of ways to
use a graphing utility to generate
the terms of a sequence. For
instance, you can display the
first 10 terms of the sequence

using the sequence feature or 
the table feature. 

an !
1
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In the next section, you will encounter limits of sequences such as that shown in
Example 5. A strategy for evaluating such limits is to begin by writing the th term in
standard rational function form. Then you can determine the limit by comparing the
degrees of the numerator and denominator, as shown on page 884.

n
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Comparing Rates of Convergence In the table in Example 5 above, the value of
approaches its limit of rather slowly. (The first term to be accurate to three 

decimal places is ) Each of the following sequences converges to 0.
Which converges the quickest? Which converges the slowest? Why? Write a short
paragraph discussing your conclusions.

a. b. c.

d. e. hn !
2n

n!
dn !

1
n!
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1
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1
n2an !

1
n

a4801 y 2.667.

8
3an

CLASSROOM DISCUSSION

Finding the Limit of a Sequence

Find the limit of the sequence whose th term is

an "
8
n3)n!n $ 1"!2n $ 1"

6 *.

n

Example 5

Algebraic Solution
Begin by writing the th term in standard rational function 
form—as the ratio of two polynomials.

Write original th term.

Multiply fractions.

Write in standard rational form.

From this form, you can see that the degree of the numerator is equal
to the degree of the denominator. So, the limit of the sequence is the
ratio of the coefficients of the highest-powered terms.

Now try Exercise 49.

lim
n→!

8n3 $ 12n2 $ 4n
3n3 "

8
3

"
8n3 $ 12n2 $ 4n

3n3

"
8!n"!n $ 1"!2n $ 1"

6n3

nan "
8
n3)n!n $ 1"!2n $ 1"

6 *

n

Numerical Solution
Construct a table that shows the value of as 
becomes larger and larger, as shown below.

From the table, you can estimate that as approaches
gets closer and closer to 2.667 + 8

3.an!,
n

nan

n an

1 8

10 3.08

100 2.707

1000 2.671

10,000 2.667


