# 12.2 EXERCISES

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

## **VOCABULARY:** Fill in the blanks.

- 2. The fraction  $\frac{0}{0}$  has no meaning as a real number and therefore is called an \_\_\_\_\_\_.
- 3. The limit  $\lim_{x \to 0} f(x) = L_1$  is an example of a \_\_\_\_\_.
- 4. The limit of a \_\_\_\_\_ is an expression of the form  $\lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ .

## **SKILLS AND APPLICATIONS**

In Exercises 5-8, use the graph to determine each limit visually (if it exists). Then identify another function that agrees with the given function at all but one point.



| utility to verify your result graphically.                        |                                                                   |  |  |  |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| 9. $\lim_{x \to 6} \frac{x-6}{x^2-36}$                            | <b>10.</b> $\lim_{x \to 7} \frac{7 - x}{x^2 - 49}$                |  |  |  |  |  |
| 11. $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$                   | 12. $\lim_{x \to -2} \frac{x^2 + 6x + 8}{x + 2}$                  |  |  |  |  |  |
| <b>13.</b> $\lim_{x \to -1} \frac{1 - 2x - 3x^2}{1 + x}$          | 14. $\lim_{x \to -3} \frac{2x^2 + 5x - 3}{x + 3}$                 |  |  |  |  |  |
| <b>15.</b> $\lim_{t \to 2} \frac{t^3 - 8}{t - 2}$                 | <b>16.</b> $\lim_{a \to -4} \frac{a^3 + 64}{a + 4}$               |  |  |  |  |  |
| 17. $\lim_{x \to 2} \frac{x^5 - 32}{x - 2}$                       | <b>18.</b> $\lim_{x \to 1} \frac{x^4 - 1}{x - 1}$                 |  |  |  |  |  |
| <b>19.</b> $\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 3x + 2}$      | <b>20.</b> $\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 3x - 4}$     |  |  |  |  |  |
| <b>21.</b> $\lim_{y \to 0} \frac{\sqrt{5+y} - \sqrt{5}}{y}$       | <b>22.</b> $\lim_{z \to 0} \frac{\sqrt{7-z} - \sqrt{7}}{z}$       |  |  |  |  |  |
| 23. $\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$              | <b>24.</b> $\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$                |  |  |  |  |  |
| <b>25.</b> $\lim_{x \to 0} \frac{\sqrt{2x+1}-1}{x}$               | <b>26.</b> $\lim_{x \to 9} \frac{3 - \sqrt{x}}{x - 9}$            |  |  |  |  |  |
| 27. $\lim_{x \to -3} \frac{\sqrt{x+7}-2}{x+3}$                    | <b>28.</b> $\lim_{x \to 2} \frac{4 - \sqrt{18 - x}}{x - 2}$       |  |  |  |  |  |
| <b>29.</b> $\lim_{x \to 0} \frac{\frac{1}{x+1} - 1}{x}$           | <b>30.</b> $\lim_{x \to 0} \frac{\frac{1}{x-8} + \frac{1}{8}}{x}$ |  |  |  |  |  |
| <b>31.</b> $\lim_{x \to 0} \frac{\frac{1}{x+4} - \frac{1}{4}}{x}$ | <b>32.</b> $\lim_{x \to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x}$ |  |  |  |  |  |
| <b>33.</b> $\lim_{x \to 0} \frac{\sec x}{\tan x}$                 | <b>34.</b> $\lim_{x \to \pi} \frac{\csc x}{\cot x}$               |  |  |  |  |  |
| <b>35.</b> $\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x}$         | <b>36.</b> $\lim_{x \to \pi/2} \frac{\cos x - 1}{\sin x}$         |  |  |  |  |  |

In Exercises 9–36, find the limit (if it exists). Use a graphing utility to verify your result graphically.

ڬ In Exercises 37–48, use a graphing utility to graph the ڬ In Exercises 63–68, use a graphing utility to graph the function function and approximate the limit accurate to three decimal places.

37. 
$$\lim_{x \to 0} \frac{e^{2x} - 1}{x}$$
 38.  $\lim_{x \to 0} \frac{1 - e^{-x}}{x}$ 

 39.  $\lim_{x \to 0^+} (x \ln x)$ 
 40.  $\lim_{x \to 0^+} (x^2 \ln x)$ 

 41.  $\lim_{x \to 0} \frac{\sin 2x}{x}$ 
 42.  $\lim_{x \to 0} \frac{\sin 3x}{x}$ 

 43.  $\lim_{x \to 0} \frac{\tan x}{x}$ 
 44.  $\lim_{x \to 0} \frac{1 - \cos 2x}{x}$ 

 45.  $\lim_{x \to 1} \frac{1 - \sqrt[3]{x}}{1 - x}$ 
 46.  $\lim_{x \to 1} \frac{\sqrt[3]{x} - x}{x - 1}$ 

 47.  $\lim_{x \to 0} (1 - x)^{2/x}$ 
 48.  $\lim_{x \to 0} (1 + 2x)^{1/x}$ 

🕀 GRAPHICAL, NUMERICAL, AND ALGEBRAIC ANALYSIS In Exercises 49–54, (a) graphically approximate the limit (if it exists) by using a graphing utility to graph the function, (b) numerically approximate the limit (if it exists) by using the table feature of a graphing utility to create a table, and (c) algebraically evaluate the limit (if it exists) by the appropriate technique(s).

$$49. \lim_{x \to 1^{-}} \frac{x-1}{x^2-1} \qquad 50. \lim_{x \to 5^{+}} \frac{5-x}{25-x^2} \\
51. \lim_{x \to 2} \frac{x^4-1}{x^4-3x^2-4} \qquad 52. \lim_{x \to 2} \frac{x^4-2x^2-8}{x^4-6x^2+8} \\
53. \lim_{x \to 16^{+}} \frac{4-\sqrt{x}}{x-16} \qquad 54. \lim_{x \to 0^{-}} \frac{\sqrt{x+2}-\sqrt{2}}{x} \\$$

In Exercises 55–62, graph the function. Determine the limit (if it exists) by evaluating the corresponding one-sided limits.

55. 
$$\lim_{x \to 6} \frac{|x - 6|}{x - 6}$$
  
56. 
$$\lim_{x \to 2} \frac{|x - 2|}{x - 2}$$
  
57. 
$$\lim_{x \to 1} \frac{1}{x^2 + 1}$$
  
58. 
$$\lim_{x \to 1} \frac{1}{x^2 - 1}$$
  
59. 
$$\lim_{x \to 2} f(x) \text{ where } f(x) = \begin{cases} x - 1, & x \le 2\\ 2x - 3, & x > 2 \end{cases}$$
  
60. 
$$\lim_{x \to 1} f(x) \text{ where } f(x) = \begin{cases} 2x + 1, & x < 1\\ 4 - x^2, & x \ge 1 \end{cases}$$
  
61. 
$$\lim_{x \to 1} f(x) \text{ where } f(x) = \begin{cases} 4 - x^2, & x \le 1\\ 3 - x, & x > 1 \end{cases}$$
  
62. 
$$\lim_{x \to 0} f(x) \text{ where } f(x) = \begin{cases} 4 - x^2, & x \le 0\\ x + 4, & x > 0 \end{cases}$$

and the equations y = x and y = -x in the same viewing window. Use the graph to find  $\lim_{x \to \infty} f(x)$ .

**63.** 
$$f(x) = x \cos x$$
  
**64.**  $f(x) = |x \sin x|$   
**65.**  $f(x) = |x| \sin x$   
**66.**  $f(x) = |x| \cos x$   
**67.**  $f(x) = x \sin \frac{1}{x}$   
**68.**  $f(x) = x \cos \frac{1}{x}$ 

In Exercises 69 and 70, state which limit can be evaluated by using direct substitution. Then evaluate or approximate each limit.

**69.** (a) 
$$\lim_{x \to 0} x^2 \sin x^2$$
  
(b)  $\lim_{x \to 0} \frac{\sin x^2}{x^2}$   
**70.** (a)  $\lim_{x \to 0} \frac{x}{\cos x}$   
(b)  $\lim_{x \to 0} \frac{1 - \cos x}{x}$ 

In Exercises 71–78, find  $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ .

71. 
$$f(x) = 2x + 1$$
  
72.  $f(x) = 3 - 4x$   
73.  $f(x) = \sqrt{x}$   
74.  $f(x) = \sqrt{x - 2}$   
75.  $f(x) = x^2 - 3x$   
76.  $f(x) = 4 - 2x - x^2$   
77.  $f(x) = \frac{1}{x + 2}$   
78.  $f(x) = \frac{1}{x - 1}$ 

FREE-FALLING OBJECT In Exercises 79 and 80, use the position function

 $s(t) = -16t^2 + 256$ 

which gives the height (in feet) of a free-falling object. The velocity at time t = a seconds is given by  $\lim_{x \to a} \frac{[s(a) - s(t)]}{(a - t)}.$ 

**79.** Find the velocity when t = 1 second.

**80.** Find the velocity when t = 2 seconds.

**81. SALARY CONTRACT** A union contract guarantees an 8% salary increase yearly for 3 years. For a current salary of \$30,000, the salaries f(t) (in thousands of dollars) for the next 3 years are given by

$$f(t) = \begin{cases} 30.000, & 0 < t \le 1\\ 32.400, & 1 < t \le 2\\ 34.992, & 2 < t \le 3 \end{cases}$$

where *t* represents the time in years. Show that the limit of *f* as  $t \rightarrow 2$  does not exist.

**82. CONSUMER AWARENESS** The cost of sending a package overnight is \$15 for the first pound and \$1.30 for each additional pound or portion of a pound. A plastic mailing bag can hold up to 3 pounds. The cost f(x) of sending a package in a plastic mailing bag is given by

$$f(x) = \begin{cases} 15.00, & 0 < x \le 1\\ 16.30, & 1 < x \le 2\\ 17.60, & 2 < x \le 3 \end{cases}$$

where x represents the weight of the package (in pounds). Show that the limit of f as  $x \rightarrow 1$  does not exist.

- **83. CONSUMER AWARENESS** The cost of hooking up and towing a car is \$85 for the first mile and \$5 for each additional mile or portion of a mile. A model for the cost *C* (in dollars) is C(x) = 85 5[[-(x 1)]], where *x* is the distance in miles. (Recall from Section 1.6 that f(x) = [[x]] = the greatest integer less than or equal to *x*.)
  - (a) Use a graphing utility to graph C for  $0 < x \le 10$ .
  - (b) Complete the table and observe the behavior of *C* as *x* approaches 5.5. Use the graph from part (a) and the table to find  $\lim_{x\to 5.5} C(x)$ .

| x | 5 | 5.3 | 5.4 | 5.5 | 5.6 | 5.7 | 6 |
|---|---|-----|-----|-----|-----|-----|---|
| С |   |     |     | ?   |     |     |   |

(c) Complete the table and observe the behavior of C as x approaches 5. Does the limit of C(x) as x approaches 5 exist? Explain.

| x | 4 | 4.5 | 4.9 | 5 | 5.1 | 5.5 | 6 |
|---|---|-----|-----|---|-----|-----|---|
| С |   |     |     | ? |     |     |   |

**84. CONSUMER AWARENESS** The cost *C* (in dollars) of making *x* photocopies at a copy shop is given by the function

$$C(x) = \begin{cases} 0.15x, & 0 < x \le 25\\ 0.10x, & 25 < x \le 100\\ 0.07x, & 100 < x \le 500\\ 0.05x, & x > 500 \end{cases}$$

- (a) Sketch a graph of the function.
- (b) Find each limit and interpret your result in the context of the situation.

(i)  $\lim_{x \to 15} C(x)$  (ii)  $\lim_{x \to 99} C(x)$  (iii)  $\lim_{x \to 305} C(x)$ 

(c) Create a table of values to show numerically that each limit does not exist.

(i) 
$$\lim_{x \to 25} C(x)$$
 (ii)  $\lim_{x \to 100} C(x)$  (iii)  $\lim_{x \to 500} C(x)$ 

(d) Explain how you can use the graph in part (a) to verify that the limits in part (c) do not exist.

### **EXPLORATION**

**TRUE OR FALSE?** In Exercises 85 and 86, determine whether the statement is true or false. Justify your answer.

- **85.** When your attempt to find the limit of a rational function yields the indeterminate form  $\frac{0}{0}$ , the rational function's numerator and denominator have a common factor.
- **86.** If f(c) = L, then  $\lim f(x) = L$ .

### 87. THINK ABOUT IT

- (a) Sketch the graph of a function for which f(2) is defined but for which the limit of f(x) as x approaches 2 does not exist.
- (b) Sketch the graph of a function for which the limit of f(x) as x approaches 1 is 4 but for which  $f(1) \neq 4$ .

88. CAPSTONE Given

$$f(x) = \begin{cases} 2x, & x \le 0\\ x^2 + 1, & x > 0 \end{cases}$$

find each of the following limits. If the limit does not exist, explain why.

(a) 
$$\lim_{x \to 0^-} f(x)$$
 (b)  $\lim_{x \to 0^+} f(x)$  (c)  $\lim_{x \to 0} f(x)$ 

**89. WRITING** Consider the limit of the rational function given by p(x)/q(x). What conclusion can you make if direct substitution produces each expression? Write a short paragraph explaining your reasoning.

| (a) | $\lim_{x \to c} \frac{p(x)}{q(x)} =$ | $\frac{0}{1}$ |
|-----|--------------------------------------|---------------|
| (b) | $\lim_{x \to c} \frac{p(x)}{q(x)} =$ | $\frac{1}{1}$ |
| (c) | $\lim_{x \to c} \frac{p(x)}{q(x)} =$ | $\frac{1}{0}$ |
| (d) | $\lim_{x \to c} \frac{p(x)}{q(x)} =$ | $\frac{0}{0}$ |