12. 1 Introduction to Limits

What you should learn

- Use the definition of limit to estimate limits.
- Determine whether limits of functions exist.
- Use properties of limits and direct substitution to evaluate limits.

Why you should learn it

The concept of a limit is useful in applications involving maximization. For instance, in Exercise 5 on page 858 , the concept of a limit is used to verify the maximum volume of an open box.

The Limit Concept

The notion of a limit is a fundamental concept of calculus. In this chapter, you will learn how to evaluate limits and how they are used in the two basic problems of calculus: the tangent line problem and the area problem.

Example 1 Finding a Rectangle of Maximum Area

You are given 24 inches of wire and are asked to form a rectangle whose area is as large as possible. Determine the dimensions of the rectangle that will produce a maximum area.

Solution

Let w represent the width of the rectangle and let l represent the length of the rectangle. Because

$$
2 w+2 l=24 \quad \text { Perimeter is } 24
$$

it follows that $l=12-w$, as shown in Figure 12.1. So, the area of the rectangle is

$$
\begin{aligned}
A & =l w & & \text { Formula for area } \\
& =(12-w) w & & \text { Substitute } 12-w \text { for } l . \\
& =12 w-w^{2} . & & \text { Simplify. }
\end{aligned}
$$

FIGURE 12.1

Using this model for area, you can experiment with different values of w to see how to obtain the maximum area. After trying several values, it appears that the maximum area occurs when $w=6$, as shown in the table.

Width, w	5.0	5.5	5.9	6.0	6.1	6.5	7.0
Area, A	35.00	35.75	35.99	36.00	35.99	35.75	35.00

In limit terminology, you can say that "the limit of A as w approaches 6 is 36 ." This is written as

$$
\lim _{w \rightarrow 6} A=\lim _{w \rightarrow 6}\left(12 w-w^{2}\right)=36
$$

CHECKPoint Now try Exercise 5.

Study Tip

An alternative notation for $\lim _{x \rightarrow c} f(x)=L$ is

$$
f(x) \rightarrow L \text { as } x \rightarrow c
$$

which is read as " $f(x)$ approaches L as x approaches c."

FIGURE 12.2

FIGURE 12.3

Definition of Limit

Definition of Limit

If $f(x)$ becomes arbitrarily close to a unique number L as x approaches c from either side, the limit of $f(x)$ as x approaches c is L. This is written as

$$
\lim _{x \rightarrow c} f(x)=L
$$

Example 2 Estimating a Limit Numerically

Use a table to estimate numerically the limit: $\lim _{x \rightarrow 2}(3 x-2)$.

Solution

Let $f(x)=3 x-2$. Then construct a table that shows values of $f(x)$ for two sets of x-values-one set that approaches 2 from the left and one that approaches 2 from the right.

x	1.9	1.99	1.999	2.0	2.001	2.01	2.1
$f(x)$	3.700	3.970	3.997	$?$	4.003	4.030	4.300

From the table, it appears that the closer x gets to 2 , the closer $f(x)$ gets to 4 . So, you can estimate the limit to be 4 . Figure 12.2 adds further support for this conclusion.

CHECK Point Now try Exercise 7.
In Figure 12.2 , note that the graph of $f(x)=3 x-2$ is continuous. For graphs that are not continuous, finding a limit can be more difficult.

Example 3 Estimating a Limit Numerically

Use a table to estimate numerically the limit: $\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1}$.

Solution

Let $f(x)=x /(\sqrt{x+1}-1)$. Then construct a table that shows values of $f(x)$ for two sets of x-values-one set that approaches 0 from the left and one that approaches 0 from the right.

x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
$f(x)$	1.99499	1.99949	1.99995	$?$	2.00005	2.00050	2.00499

From the table, it appears that the limit is 2. The graph shown in Figure 12.3 verifies that the limit is 2 .

CHECK Point Now try Exercise 9.

In Example 3, note that $f(x)$ has a limit when $x \rightarrow 0$ even though the function is not defined when $x=0$. This often happens, and it is important to realize that the existence or nonexistence of $f(x)$ at $x=c$ has no bearing on the existence of the limit of $f(x)$ as x approaches c.

Example 4 Estimating a Limit

Estimate the limit: $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}+x-1}{x-1}$.

Numerical Solution

Let $f(x)=\left(x^{3}-x^{2}+x-1\right) /(x-1)$. Then construct a table that shows values of $f(x)$ for two sets of x-values-one set that approaches 1 from the left and one that approaches 1 from the right.

x	0.9	0.99	0.999	1.0
$f(x)$	1.8100	1.9801	1.9980	$?$

x	1.0	1.001	1.01	1.1
$f(x)$	$?$	2.0020	2.0201	2.2100

From the tables, it appears that the limit is 2.

Graphical Solution

Let $f(x)=\left(x^{3}-x^{2}+x-1\right) /(x-1)$. Then sketch a graph of the function, as shown in Figure 12.4. From the graph, it appears that as x approaches 1 from either side, $f(x)$ approaches 2 . So, you can estimate the limit to be 2 .

FIGURE 12.4

Example 5 Using a Graph to Find a Limit
Find the limit of $f(x)$ as x approaches 3 , where f is defined as

$$
f(x)=\left\{\begin{array}{ll}
2, & x \neq 3 \\
0, & x=3
\end{array} .\right.
$$

FIGURE 12.5

Solution

Because $f(x)=2$ for all x other than $x=3$ and because the value of $f(3)$ is immaterial, it follows that the limit is 2 (see Figure 12.5). So, you can write

$$
\lim _{x \rightarrow 3} f(x)=2 .
$$

The fact that $f(3)=0$ has no bearing on the existence or value of the limit as x approaches 3 . For instance, if the function were defined as

$$
f(x)= \begin{cases}2, & x \neq 3 \\ 4, & x=3\end{cases}
$$

the limit as x approaches 3 would be the same.

FIGURE 12.6

FIGURE 12.7

Limits That Fail to Exist

Next, you will examine some functions for which limits do not exist.

Example 6 Comparing Left and Right Behavior

Show that the limit does not exist.

$$
\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

Solution

Consider the graph of the function given by $f(x)=|x| / x$. From Figure 12.6, you can see that for positive x-values

$$
\frac{|x|}{x}=1, \quad x>0
$$

and for negative x-values

$$
\frac{|x|}{x}=-1, \quad x<0
$$

This means that no matter how close x gets to 0 , there will be both positive and negative x-values that yield $f(x)=1$ and $f(x)=-1$. This implies that the limit does not exist.

CHECKPoint Now try Exercise 31.

Example 7 Unbounded Behavior

Discuss the existence of the limit.

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}
$$

Solution

Let $f(x)=1 / x^{2}$. In Figure 12.7, note that as x approaches 0 from either the right or the left, $f(x)$ increases without bound. This means that by choosing x close enough to 0 , you can force $f(x)$ to be as large as you want. For instance, $f(x)$ will be larger than 100 if you choose x that is within $\frac{1}{10}$ of 0 . That is,

$$
0<|x|<\frac{1}{10} \quad \square f(x)=\frac{1}{x^{2}}>100
$$

Similarly, you can force $f(x)$ to be larger than $1,000,000$, as follows.

$$
0<|x|<\frac{1}{1000} \quad \square f(x)=\frac{1}{x^{2}}>1,000,000
$$

Because $f(x)$ is not approaching a unique real number L as x approaches 0 , you can conclude that the limit does not exist.

FIGURE 12.8

Example 8 Oscillating Behavior

Discuss the existence of the limit.

$$
\lim _{x \rightarrow 0} \sin \frac{1}{x}
$$

Solution

Let $f(x)=\sin (1 / x)$. In Figure 12.8, you can see that as x approaches $0, f(x)$ oscillates between -1 and 1 . Therefore, the limit does not exist because no matter how close you are to 0 , it is possible to choose values of x_{1} and x_{2} such that $\sin \left(1 / x_{1}\right)=1$ and $\sin \left(1 / x_{2}\right)=-1$, as indicated in the table.

x	$-\frac{2}{\pi}$	$-\frac{2}{3 \pi}$	$-\frac{2}{5 \pi}$	0	$\frac{2}{5 \pi}$	$\frac{2}{3 \pi}$	$\frac{2}{\pi}$
$\sin \frac{1}{x}$	-1	1	-1	$?$	1	-1	1

Examples 6, 7, and 8 show three of the most common types of behavior associated with the nonexistence of a limit.

Conditions Under Which Limits Do Not Exist

The limit of $f(x)$ as $x \rightarrow c$ does not exist if any of the following conditions are true.

1. $f(x)$ approaches a different number from the right side

Example 6 of c than it approaches from the left side of c.
2. $f(x)$ increases or decreases without bound as x approaches c.

Example 7
3. $f(x)$ oscillates between two fixed values as x approaches c.

Example 8

A graphing utility can help you discover the behavior of a function near the x-value at which you are trying to evaluate a limit. When you do this, however, you should realize that you can't always trust the graphs that graphing utilities display. For instance, if you use a graphing utility to graph the function in Example 8 over an interval containing 0 , you will most likely obtain an incorrect graph, as shown in Figure 12.9. The reason that a graphing utility can't show the correct graph is that the graph has infinitely many oscillations over any interval that contains 0 .

Properties of Limits and Direct Substitution

You have seen that sometimes the limit of $f(x)$ as $x \rightarrow c$ is simply $f(c)$, as shown in Example 2. In such cases, it is said that the limit can be evaluated by direct substitution. That is,

$$
\lim _{x \rightarrow c} f(x)=f(c) . \quad \text { Substitute } c \text { for } x
$$

There are many "well-behaved" functions, such as polynomial functions and rational functions with nonzero denominators, that have this property. Some of the basic ones are included in the following list.

Basic Limits

Let b and c be real numbers and let n be a positive integer.

1. $\lim _{x \rightarrow c} b=b$	Limit of a constant function
2. $\lim _{x \rightarrow c} x=c$	Limit of the identity function
3. $\lim _{x \rightarrow c} x^{n}=c^{n}$	Limit of a power function
4. $\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}, \quad$ for n even and $c>0$	Limit of a radical function

For a proof of the limit of a power function, see Proofs in Mathematics on page 906.
Trigonometric functions can also be included in this list. For instance,
$\lim _{x \rightarrow \pi} \sin x=\sin \pi=0$
and

$$
\lim _{x \rightarrow 0} \cos x=\cos 0=1
$$

By combining the basic limits with the following operations, you can find limits for a wide variety of functions.

Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.
$\lim _{x \rightarrow c} f(x)=L \quad$ and $\quad \lim _{x \rightarrow c} g(x)=K$

1. Scalar multiple: $\quad \lim _{x \rightarrow c}[b f(x)]=b L$
2. Sum or difference: $\quad \lim _{x \rightarrow c}[f(x) \pm g(x)]=L \pm K$
3. Product: $\quad \lim _{x \rightarrow c}[f(x) g(x)]=L K$
4. Quotient:
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{K}, \quad$ provided $K \neq 0$
5. Power:
$\lim _{x \rightarrow c}[f(x)]^{n}=L^{n}$

Example 9 Direct Substitution and Properties of Limits

Find each limit.
a. $\lim _{x \rightarrow 4} x^{2}$
b. $\lim _{x \rightarrow 4} 5 x$
c. $\lim _{x \rightarrow \pi} \frac{\tan x}{x}$
d. $\lim _{x \rightarrow 9} \sqrt{x}$
e. $\lim _{x \rightarrow \pi}(x \cos x)$
f. $\lim _{x \rightarrow 3}(x+4)^{2}$

Solution

You can use the properties of limits and direct substitution to evaluate each limit.
a. $\lim _{x \rightarrow 4} x^{2}=(4)^{2}$

$$
=16
$$

b. $\lim _{x \rightarrow 4} 5 x=5 \lim _{x \rightarrow 4} x$
Property 1
$=5(4)$
$=20$
c. $\lim _{x \rightarrow \pi} \frac{\tan x}{x}=\frac{\lim _{x \rightarrow \pi} \tan x}{\lim _{x \rightarrow \pi} x}$

Property 4
$=\frac{0}{\pi}=0$
d. $\lim _{x \rightarrow 9} \sqrt{x}=\sqrt{9}=3$
e. $\lim _{x \rightarrow \pi}(x \cos x)=\left(\lim _{x \rightarrow \pi} x\right)\left(\lim _{x \rightarrow \pi} \cos x\right) \quad$ Property 3

$$
\begin{aligned}
& =\pi(\cos \pi) \\
& =-\pi
\end{aligned}
$$

f. $\lim _{x \rightarrow 3}(x+4)^{2}=\left[\left(\lim _{x \rightarrow 3} x\right)+\left(\lim _{x \rightarrow 3} 4\right)\right]^{2} \quad$ Properties 2 and 5

$$
\begin{aligned}
& =(3+4)^{2} \\
& =7^{2}=49
\end{aligned}
$$

CHECK Point Now try Exercise 47.
When evaluating limits, remember that there are several ways to solve most problems. Often, a problem can be solved numerically, graphically, or algebraically. The limits in Example 9 were found algebraically. You can verify the solutions numerically and/or graphically. For instance, to verify the limit in Example 9(a) numerically, create a table that shows values of x^{2} for two sets of x-values-one set that approaches 4 from the left and one that approaches 4 from the right, as shown below. From the table, you can see that the limit as x approaches 4 is 16 . Now, to verify the limit graphically, sketch the graph of $y=x^{2}$. From the graph shown in Figure 12.10, you can determine that the limit as x approaches 4 is 16 .

x	3.9	3.99	3.999	4.0	4.001	4.01	4.1
x^{2}	15.2100	15.9201	15.9920	$?$	16.0080	16.0801	16.8100

The results of using direct substitution to evaluate limits of polynomial and rational functions are summarized as follows.

Limits of Polynomial and Rational Functions

1. If p is a polynomial function and c is a real number, then

$$
\lim _{x \rightarrow c} p(x)=p(c) .
$$

2. If r is a rational function given by $r(x)=p(x) / q(x)$, and c is a real number such that $q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} r(x)=r(c)=\frac{p(c)}{q(c)} .
$$

For a proof of the limit of a polynomial function, see Proofs in Mathematics on page 906.

Example 10 Evaluating Limits by Direct Substitution

Find each limit.
a. $\lim _{x \rightarrow-1}\left(x^{2}+x-6\right)$
b. $\lim _{x \rightarrow-1} \frac{x^{2}+x-6}{x+3}$

Solution

The first function is a polynomial function and the second is a rational function (with a nonzero denominator at $x=-1$). So, you can evaluate the limits by direct substitution.
a. $\lim _{x \rightarrow-1}\left(x^{2}+x-6\right)=(-1)^{2}+(-1)-6$

$$
=-6
$$

b. $\lim _{x \rightarrow-1} \frac{x^{2}+x-6}{x+3}=\frac{(-1)^{2}+(-1)-6}{-1+3}$

$$
\begin{aligned}
& =-\frac{6}{2} \\
& =-3
\end{aligned}
$$

CHECKPoint Now try Exercise 51.

Classroom Discussion

Graphs with Holes Sketch the graph of each function. Then find the limits of each function as x approaches 1 and as x approaches 2 . What conclusions can you make?
a. $f(x)=x+1$
b. $g(x)=\frac{x^{2}-1}{x-1}$
c. $h(x)=\frac{x^{3}-2 x^{2}-x+2}{x^{2}-3 x+2}$

Use a graphing utility to graph each function above. Does the graphing utility distinguish among the three graphs? Write a short explanation of your findings.

