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Alternative Definition of Conic
In Sections 10.3 and 10.4, you learned that the rectangular equations of ellipses and
hyperbolas take simple forms when the origin lies at their centers. As it happens, there
are many important applications of conics in which it is more convenient to use one of
the foci as the origin. In this section, you will learn that polar equations of conics take
simple forms if one of the foci lies at the pole.

To begin, consider the following alternative definition of conic that uses the 
concept of eccentricity.

In Figure 10.79, note that for each type of conic, the focus is at the pole.

Ellipse: Parabola: Hyperbola

FIGURE 10.79

Polar Equations of Conics
The benefit of locating a focus of a conic at the pole is that the equation of the conic
takes on a simpler form. For a proof of the polar equations of conics, see Proofs in
Mathematics on page 806.
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10.9 POLAR EQUATIONS OF CONICS

What you should learn
• Define conics in terms of 

eccentricity.
• Write and graph equations of 

conics in polar form.
• Use equations of conics in polar

form to model real-life problems.

Why you should learn it
The orbits of planets and satellites can
be modeled with polar equations. For
instance, in Exercise 65 on page 796, 
a polar equation is used to model the
orbit of a satellite.
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Alternative Definition of Conic
The locus of a point in the plane that moves so that its distance from a fixed
point (focus) is in a constant ratio to its distance from a fixed line (directrix) is 
a conic. The constant ratio is the eccentricity of the conic and is denoted by 
Moreover, the conic is an ellipse if a parabola if and a hyperbola
if (See Figure 10.79.)e > 1.

e ! 1,e < 1,
e.

Polar Equations of Conics
The graph of a polar equation of the form

1. or 2.

is a conic, where is the eccentricity and is the distance between the
focus (pole) and the directrix.

!p!e > 0

r !
ep

1 ± e sin #
r !

ep
1 ± e cos #



Equations of the form

Vertical directrix

correspond to conics with a vertical directrix and symmetry with respect to the polar
axis. Equations of the form

Horizontal directrix

correspond to conics with a horizontal directrix and symmetry with respect to the line
Moreover, the converse is also true—that is, any conic with a focus at the 

pole and having a horizontal or vertical directrix can be represented by one of these
equations.
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Identifying a Conic from Its Equation

Identify the type of conic represented by the equation r !
15

3 % 2 cos #
.

Example 1

For the ellipse in Figure 10.80, the major axis is horizontal and the vertices lie at
and So, the length of the axis is To find the length of the

axis, you can use the equations and to conclude that

Ellipse

Because you have which implies that 
So, the length of the minor axis is A similar analysis for hyperbolas yields

Hyperbola! a2#e2 % 1$.

! #ea$2 % a2

b2 ! c2 % a2

2b ! 6%5.
b ! %45 ! 3%5.b2 ! 92&1 % #2

3$2' ! 45,e ! 2
3,

! a2#1 % e2$.

! a2 % #ea$2

b2 ! a2 % c2

b2 ! a2 % c2e ! c"aminor
2a ! 18.major#3, $$.#15, 0$

792 Chapter 10 Topics in Analytic Geometry

Algebraic Solution
To identify the type of conic, rewrite the equation in the
form

Write original equation.

Because you can conclude that the graph is an
ellipse.

Now try Exercise 15.

e ! 2
3 < 1,

Divide numerator and
denominator by 3.!

5
1 % #2"3$ cos #

r !
15

3 % 2 cos #

r ! #ep$"#1 ± e cos #$.

Graphical Solution
You can start sketching the graph by plotting points from 
to Because the equation is of the form the
graph of is symmetric with respect to the polar axis. So, you
can complete the sketch, as shown in Figure 10.80. From this,
you can conclude that the graph is an ellipse.

FIGURE 10.80
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Sketching a Conic from Its Polar Equation

Identify the conic and sketch its graph.

Solution
Dividing the numerator and denominator by 3, you have

Because the graph is a hyperbola. The transverse axis of the hyperbola lies
on the line and the vertices occur at and Because the
length of the transverse axis is 12, you can see that To find write

So, Finally, you can use and to determine that the asymptotes of the 
hyperbola are The graph is shown in Figure 10.81.

Now try Exercise 23.

In the next example, you are asked to find a polar equation of a specified conic. To
do this, let be the distance between the pole and the directrix.

1. Horizontal directrix above the pole:

2. Horizontal directrix below the pole:

3. Vertical directrix to the right of the pole:

4. Vertical directrix to the left of the pole:

Finding the Polar Equation of a Conic

Find the polar equation of the parabola whose focus is the pole and whose directrix is
the line 

Solution
From Figure 10.82, you can see that the directrix is horizontal and above the pole, so
you can choose an equation of the form

Moreover, because the eccentricity of a parabola is and the distance between the
pole and the directrix is you have the equation

Now try Exercise 39.
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FIGURE 10.81

0

2

θr = 3
1 + sin

(0, 0) 1 3 42

Directrix:
y = 3

π

FIGURE 10.82

TECHNOLOGY

Use a graphing utility set in 
polar mode to verify the four 
orientations shown at the right.
Remember that must be positive,
but can be positive or negative.p

e



Applications
Kepler’s Laws (listed below), named after the German astronomer Johannes Kepler
(1571–1630), can be used to describe the orbits of the planets about the sun.

1. Each planet moves in an elliptical orbit with the sun at one focus.

2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal times.

3. The square of the period (the time it takes for a planet to orbit the sun) is
proportional to the cube of the mean distance between the planet and the sun.

Although Kepler simply stated these laws on the basis of observation, they were later
validated by Isaac Newton (1642–1727). In fact, Newton was able to show that each law
can be deduced from a set of universal laws of motion and gravitation that govern the
movement of all heavenly bodies, including comets and satellites. This is illustrated in
the next example, which involves the comet named after the English mathematician and
physicist Edmund Halley (1656–1742).

If you use Earth as a reference with a period of 1 year and a distance of 
1 astronomical unit (an is defined as the mean distance between Earth
and the sun, or about 93 million miles), the proportionality constant in Kepler’s third
law is 1. For example, because Mars has a mean distance to the sun of 
astronomical units, its period is given by So, the period of Mars is 

years.

Halley’s Comet

Halley’s comet has an elliptical orbit with an eccentricity of The length of
the major axis of the orbit is approximately 35.88 astronomical units. Find a polar 
equation for the orbit. How close does Halley’s comet come to the sun?

Solution
Using a vertical axis, as shown in Figure 10.83, choose an equation of the form

Because the vertices of the ellipse occur when and
you can determine the length of the major axis to be the sum of the -values

of the vertices. That is,

So, and Using this value of in the 
equation, you have

where is measured in astronomical units. To find the closest point to the sun (the
focus), substitute in this equation to obtain

Now try Exercise 63.

, 55,000,000 miles.

, 0.59 astronomical unit
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e , 0.967.

Example 4

P , 1.88
d3 ! P2.P

d ! 1.524
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