10.8 **EXERCISES**

VOCABULARY: Fill in the blanks.

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

- **1.** The graph of $r = f(\sin \theta)$ is symmetric with respect to the line _____.
- 2. The graph of $r = g(\cos \theta)$ is symmetric with respect to the _____
- 3. The equation $r = 2 + \cos \theta$ represents a <u>Text</u>
- 4. The equation $r = 2 \cos \theta$ represents a _____.
- 5. The equation $r^2 = 4 \sin 2\theta$ represents a _____.
- 6. The equation $r = 1 + \sin \theta$ represents a _____.

SKILLS AND APPLICATIONS

In Exercises 7–12, identify the type of polar graph.

In Exercises 13-18, test for symmetry with respect to $\theta = \pi/2$, the polar axis, and the pole.

14. $r = 9\cos 3\theta$ **13.** $r = 4 + 3 \cos \theta$ $16. \ r = \frac{3}{2 + \cos \theta}$ **15.** $r = \frac{2}{1 + \sin \theta}$ **17.** $r^2 = 36 \cos 2\theta$ **18.** $r^2 = 25 \sin 2\theta$

In Exercises 19–22, find the maximum value of |r| and any zeros of r.

19. $r = 10 - 10 \sin \theta$	20. $r = 6 + 12 \cos \theta$
21. $r = 4 \cos 3\theta$	22. $r = 3 \sin 2\theta$

In Exercises 23-48, sketch the graph of the polar equation using symmetry, zeros, maximum r-values, and any other additional points.

23. <i>r</i> = 4	24. $r = -7$
25. $r = \frac{\pi}{3}$	26. $r = -\frac{3\pi}{4}$
27. $r = \sin \theta$	28. $r = 4 \cos \theta$
29. $r = 3(1 - \cos \theta)$	30. $r = 4(1 - \sin \theta)$
31. $r = 4(1 + \sin \theta)$	32. $r = 2(1 + \cos \theta)$
33. $r = 3 + 6 \sin \theta$	34. $r = 4 - 3 \sin \theta$
35. $r = 1 - 2 \sin \theta$	36. $r = 2 - 4 \cos \theta$
37. $r = 3 - 4 \cos \theta$	38. $r = 4 + 3 \cos \theta$
39. $r = 5 \sin 2\theta$	40. $r = 2 \cos 2\theta$
41. $r = 6 \cos 3\theta$	42. $r = 3 \sin 3\theta$
43. $r = 2 \sec \theta$	44. $r = 5 \csc \theta$
$45. \ r = \frac{3}{\sin \theta - 2 \cos \theta}$	$46. \ r = \frac{6}{2\sin\theta - 3\cos\theta}$
47. $r^2 = 9 \cos 2\theta$	48. $r^2 = 4 \sin \theta$

 \bigoplus In Exercises 49–58, use a graphing utility to graph the polar equation. Describe your viewing window.

49. $r = \frac{9}{4}$	50. $r = -\frac{5}{2}$
51. $r = \frac{5\pi}{8}$	52. $r = -\frac{\pi}{10}$
53. $r = 8 \cos \theta$	54. $r = \cos 2\theta$
55. $r = 3(2 - \sin \theta)$	56. $r = 2\cos(3\theta - 2)$
57. $r = 8 \sin \theta \cos^2 \theta$	58. $r = 2 \csc \theta + 5$

 \bigcirc In Exercises 59–64, use a graphing utility to graph the polar equation. Find an interval for θ for which the graph is traced only once.

59.
$$r = 3 - 8 \cos \theta$$

60. $r = 5 + 4 \cos \theta$
61. $r = 2 \cos\left(\frac{3\theta}{2}\right)$
62. $r = 3 \sin\left(\frac{5\theta}{2}\right)$

63.
$$r^2 = 16 \sin 2\theta$$
 64. $r^2 = \frac{1}{2}$

 In Exercises 65–68, use a graphing utility to graph the polar equation and show that the indicated line is an asymptote of the graph.

	Name of Graph	Polar Equation	Asymptote
65.	Conchoid	$r = 2 - \sec \theta$	x = -1
66.	Conchoid	$r = 2 + \csc \theta$	y = 1
67.	Hyperbolic spiral	$r = \frac{3}{\theta}$	<i>y</i> = 3
68.	Strophoid	$r = 2\cos 2\theta \sec \theta$	x = -2

EXPLORATION

TRUE OR FALSE? In Exercises 69 and 70, determine whether the statement is true or false. Justify your answer.

- 69. In the polar coordinate system, if a graph that has symmetry with respect to the polar axis were folded on the line $\theta = 0$, the portion of the graph above the polar axis would coincide with the portion of the graph below the polar axis.
- 70. In the polar coordinate system, if a graph that has symmetry with respect to the pole were folded on the line $\theta = 3\pi/4$, the portion of the graph on one side of the fold would coincide with the portion of the graph on the other side of the fold.
- 71. Sketch the graph of $r = 6 \cos \theta$ over each interval. 2000 800. Use a graphing utility to graph and identify Describe the part of the graph obtained in each case.

(a)
$$0 \le \theta \le \frac{\pi}{2}$$
 (b) $\frac{\pi}{2} \le \theta \le \pi$
(c) $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ (d) $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$

- **72. GRAPHICAL REASONING** Use a graphing utility to graph the polar equation $r = 6[1 + \cos(\theta - \phi)]$ for (a) $\phi = 0$, (b) $\phi = \pi/4$, and (c) $\phi = \pi/2$. Use the graphs to describe the effect of the angle ϕ . Write the equation as a function of sin θ for part (c).
 - **73.** The graph of $r = f(\theta)$ is rotated about the pole through an angle ϕ . Show that the equation of the rotated graph is $r = f(\theta - \phi)$.
 - **74.** Consider the graph of $r = f(\sin \theta)$.
 - (a) Show that if the graph is rotated counterclockwise $\pi/2$ radians about the pole, the equation of the rotated graph is $r = f(-\cos \theta)$.
 - (b) Show that if the graph is rotated counterclockwise π radians about the pole, the equation of the rotated graph is $r = f(-\sin \theta)$.

(c) Show that if the graph is rotated counterclockwise $3\pi/2$ radians about the pole, the equation of the rotated graph is $r = f(\cos \theta)$.

In Exercises 75–78, use the results of Exercises 73 and 74.

75. Write an equation for the limaçon $r = 2 - \sin \theta$ after it has been rotated through the given angle.

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{2}$ (c) π (d) $\frac{3\pi}{2}$

76. Write an equation for the rose curve $r = 2 \sin 2\theta$ after it has been rotated through the given angle.

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{2}$ (c) $\frac{2\pi}{3}$ (d) τ

77. Sketch the graph of each equation.

(a)

$$r = 1 - \sin \theta$$
 (b) $r = 1 - \sin\left(\theta - \frac{\pi}{4}\right)$

78. Sketch the graph of each equation.

(a)
$$r = 3 \sec \theta$$
 (b) $r = 3 \sec \left(\theta - \frac{\pi}{4}\right)$
(c) $r = 3 \sec \left(\theta + \frac{\pi}{3}\right)$ (d) $r = 3 \sec \left(\theta - \frac{\pi}{2}\right)$

- 79. THINK ABOUT IT How many petals do the rose curves given by $r = 2 \cos 4\theta$ and $r = 2 \sin 3\theta$ have? Determine the numbers of petals for the curves given by $r = 2 \cos n\theta$ and $r = 2 \sin n\theta$, where *n* is a positive integer.
- $r = 2 + k \sin \theta$ for k = 0, 1, 2, and 3.
- **81.** Consider the equation $r = 3 \sin k\theta$.
 - (a) Use a graphing utility to graph the equation for k = 1.5. Find the interval for θ over which the graph is traced only once.
 - (b) Use a graphing utility to graph the equation for k = 2.5. Find the interval for θ over which the graph is traced only once.
 - (c) Is it possible to find an interval for θ over which the graph is traced only once for any rational number k? Explain.
 - **82. CAPSTONE** Write a brief paragraph that describes why some polar curves have equations that are simpler in polar form than in rectangular form. Besides a circle, give an example of a curve that is simpler in polar form than in rectangular form. Give an example of a curve that is simpler in rectangular form than in polar form.