Name	Date	Period	4
	REVIEW SOLVING QUADRATICS WORKS	HEET	
Solve by factoring.			
1.) $x^2 - 64 = 0$	2.) $8x^2 - 2x - 18 = -15$	3.) $x^2 + 3x = 40$	
$4.) 2x^2 + 3x + 1 = 0$	5.) $4x^2 - 8x = 3$	6.) $3x^2 + 6x - 42 = 0$	

Solve by square roots.

7.) $4x^2 = 81$ **8.)** $(4x-3)^2 + 7 = 39$ **9.)** $5-6y^2 = 113$ **10.)** $(x-5)^2 = 36$

Solve by completing the square.

11.) $4x^2 - 8x = 3$ **12.)** $3x^2 + 6x - 42 = 0$

For #13-15, write the expression for the discriminant. Use this to find the number of real solutions for each equation: 13.) $2 x^2 - 3x + 1 = 0$ 14.) $x^2 + 4x = -7$ 15.) $x^2 + 9 = 6x$ Solve using the quadratic formula.

16.)
$$2x^2 + 5x = -3$$

 $a = _, b = _, c = _$
17.) $2x^2 - 6 = -x$
 $a = _, b = _, c = _$
18.) $3x^2 - 2x - 5 = 0$
 $a = _, b = _, c = _$

For #21-22, a quadratic function and its graph are shown. Identify the solutions, or roots, of the related quadratic equation.

For #23-24, translate and solve.

23.) One less than a positive number times three more than that number is 32. Find the number. Let n =______(____)(_____) = ____

24.) The length of a rectangle is three centimeters less than the width. If the area of the rectangle is 54cm², find the dimensions of the rectangle.

25.) Explain why $x^2 + 81 = 0$ DOES NOT have a real solution.

26.) Which method can't you use to solve this problem? $x^2 - 47 = 0$ Circle one: Factoring Square Roots Quadratic Formula Explain why: **27.)** Which method can't you use to solve this problem? $x^2 + 7x = 0$ Circle one: Factoring Square Roots Quadratic Formula Explain why: 28.) Which method can you use to solve all quadratic equations? Circle one: Factoring Square Roots Quadratic Formula Explain why:

29.) What are the two mistakes in setting up the quadratic formula:

Solve:
$$2x^2 - x - 6 = 0$$
 $x = \frac{-1 \pm \sqrt{(-1)^2 - 4(2)(6)}}{2(2)}$