12.1 EXERCISES

VOCABULARY: Fill in the blanks.

- 1. If f(x) becomes arbitrarily close to a unique number L as x approaches c from either side, the ______ of f(x) as x approaches c is L.
- 2. An alternative notation for $\lim_{x \to c} f(x) = L$ is $f(x) \to L$ as $x \to c$, which is read as "f(x) = L as x = c."
- **3.** The limit of f(x) as $x \to c$ does not exist if f(x) _____ between two fixed values.
- 4. To evaluate the limit of a polynomial function, use ______.

SKILLS AND APPLICATIONS

- **5. GEOMETRY** You create an open box from a square piece of material 24 centimeters on a side. You cut equal squares from the corners and turn up the sides.
 - (a) Draw and label a diagram that represents the box.
 - (b) Verify that the volume V of the box is given by
 - $V = 4x(12 x)^2.$
 - (c) The box has a maximum volume when x = 4. Use a graphing utility to complete the table and observe the behavior of the function as x approaches 4. Use the table to find lim V.

x	3	3.5	3.9	4	4.1	4.5	5
V							

- (d) Use a graphing utility to graph the volume function. Verify that the volume is maximum when x = 4.
- **6. GEOMETRY** You are given wire and are asked to form a right triangle with a hypotenuse of $\sqrt{18}$ inches whose area is as large as possible.
 - (a) Draw and label a diagram that shows the base *x* and height *y* of the triangle.
 - (b) Verify that the area A of the triangle is given by

$$A = \frac{1}{2}x\sqrt{18 - x^2}.$$

 (c) The triangle has a maximum area when x = 3 inches. Use a graphing utility to complete the table and observe the behavior of the function as x approaches 3. Use the table to find lim A.

x	2	2.5	2.9	3	3.1	3.5	4
Α							

(d) Use a graphing utility to graph the area function. Verify that the area is maximum when x = 3 inches.

In Exercises 7–12, complete the table and use the result to estimate the limit numerically. Determine whether or not the limit can be reached.

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

7. $\lim_{x \to 2} (5x + 4)$

x	1.9	1.99	1.999	2	2.001	2.01	2.1
f(x)				?			

8. $\lim_{x \to 1} (2x^2 + x - 4)$

x	0.9	0.99	0.999	1	1.001	1.01	1.1
f(x)				?			

```
9. \lim_{x \to 3} \frac{x-3}{x^2-9}
```

x	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)				?			

10. $\lim_{x \to -1} \frac{x+1}{x^2 - x - 2}$

x	-1.1	-1.01	-1.001	-1	-0.999
f(x)				?	
x	-0.99	-0.9			
	0.77				
f(x)					

$$11. \lim_{x \to 0} \frac{\sin 2x}{x}$$

x	-0.1	-0.0)1	-0.001	0	0.001
f(x)					?	
x	0.01	0.1				

x	0.01	0.1
f(x)		

12. $\lim_{x \to 0} \frac{\tan x}{2x}$

x	-0.1	-0.01	-0.001	0	0.001
f(x)				?	
x	0.01	0.1			
f(x)					

In Exercises 13−26, create a table of values for the function and use the result to estimate the limit numerically. Use a graphing utility to graph the corresponding function to confirm your result graphically.

13. $\lim_{x \to 1} \frac{x-1}{x^2+2x-3}$ 14. $\lim_{x \to -2} \frac{x+2}{x^2+5x+6}$ 15. $\lim_{x \to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ 16. $\lim_{x \to -3} \frac{\sqrt{1-x}-2}{x+3}$ 17. $\lim_{x \to -4} \frac{\frac{x}{x+2}-2}{x+4}$ 18. $\lim_{x \to 2} \frac{\frac{1}{x+2}-\frac{1}{4}}{x-2}$ 19. $\lim_{x \to 0} \frac{\sin x}{x}$ 20. $\lim_{x \to 0} \frac{\cos x-1}{x}$ 21. $\lim_{x \to 0} \frac{\sin^2 x}{x}$ 22. $\lim_{x \to 0} \frac{2x}{\tan 4x}$ 23. $\lim_{x \to 0} \frac{e^{2x}-1}{2x}$ 24. $\lim_{x \to 0} \frac{1-e^{-4x}}{x}$ 25. $\lim_{x \to 1} \frac{\ln(2x-1)}{x-1}$ 26. $\lim_{x \to 1} \frac{\ln(x^2)}{x-1}$

In Exercises 27 and 28, graph the function and find the limit (if it exists) as *x* approaches 2.

27. $f(x) = \begin{cases} 2x + 1, & x < 2\\ x + 3, & x \ge 2 \end{cases}$ **28.** $f(x) = \begin{cases} -2x, & x \le 2\\ x^2 - 4x + 1, & x > 2 \end{cases}$

In Exercises 29–36, use the graph to find the limit (if it exists). If the limit does not exist, explain why.

In Exercises 37−44, use a graphing utility to graph the function and use the graph to determine whether the limit exists. If the limit does not exist, explain why.

37.
$$f(x) = \frac{5}{2 + e^{1/x}}, \quad \lim_{x \to 0} f(x)$$

38.
$$f(x) = \ln(7 - x), \quad \lim_{x \to -1} f(x)$$

39.
$$f(x) = \cos \frac{1}{x}, \quad \lim_{x \to 0} f(x)$$

40.
$$f(x) = \sin \pi x, \quad \lim_{x \to 1} f(x)$$

41.
$$f(x) = \frac{\sqrt{x + 3} - 1}{x - 4}, \quad \lim_{x \to 4} f(x)$$

42.
$$f(x) = \frac{\sqrt{x + 5} - 4}{x - 2}, \quad \lim_{x \to 2} f(x)$$

43.
$$f(x) = \frac{x - 1}{x^2 - 4x + 3}, \quad \lim_{x \to 1} f(x)$$

44.
$$f(x) = \frac{7}{x - 3}, \quad \lim_{x \to 3} f(x)$$

In Exercises 45 and 46, use the given information to evaluate each limit.

45.
$$\lim_{x \to c} f(x) = 3$$
, $\lim_{x \to c} g(x) = 6$
(a) $\lim_{x \to c} [-2g(x)]$ (b) $\lim_{x \to c} [f(x) + g(x)]$
(c) $\lim_{x \to c} \frac{f(x)}{g(x)}$ (d) $\lim_{x \to c} \sqrt{f(x)}$

$$46. \lim_{x \to c} f(x) = 5, \quad \lim_{x \to c} g(x) = -2$$
(a)
$$\lim_{x \to c} [f(x) + g(x)]^2 \quad \text{(b)} \quad \lim_{x \to c} [6f(x)g(x)]$$
(c)
$$\lim_{x \to c} \frac{5g(x)}{4f(x)} \quad \text{(d)} \quad \lim_{x \to c} \frac{1}{\sqrt{f(x)}}$$

In Exercises 47 and 48, find (a) $\lim_{x\to 2} f(x)$, (b) $\lim_{x\to 2} g(x)$, (c) $\lim_{x\to 1} [f(x)g(x)]$, and (d) $\lim_{x\to 2} [g(x) - f(x)]$.

47.
$$f(x) = x^3$$
, $g(x) = \frac{\sqrt{x^2 + 5}}{2x^2}$
48. $f(x) = \frac{x}{3-x}$, $g(x) = \sin \pi x$

In Exercises 49–68, find the limit by direct substitution.

50. $\lim_{x \to -2} \left(\frac{1}{2}x^3 - 5x \right)$ **49.** $\lim_{x \to 5} (10 - x^2)$ **51.** $\lim_{x \to -3} (2x^2 + 4x + 1)$ **52.** $\lim_{x \to -2} (x^3 - 6x + 5)$ **54.** $\lim_{x \to -5} \frac{6}{x+2}$ **53.** $\lim_{x \to 3} \left(-\frac{9}{x} \right)$ **55.** $\lim_{x \to -3} \frac{3x}{x^2 + 1}$ 56. $\lim_{x \to 4} \frac{x-1}{x^2+2x+3}$ **57.** $\lim_{x \to -2} \frac{5x+3}{2x-9}$ **58.** $\lim_{x \to 3} \frac{x^2 + 1}{x}$ **59.** $\lim_{x \to 2} \sqrt{x+2}$ **60.** $\lim_{x \to 0} \sqrt[3]{x^2 - 1}$ 62. $\lim_{x \to 8} \frac{\sqrt{x+1}}{x-4}$ **61.** $\lim_{x \to 7} \frac{5x}{\sqrt{x+2}}$ **63.** $\lim_{x \to 0} e^x$ **64.** $\lim_{x \to 0} \ln x$ **65.** $\lim \sin 2x$ **66.** lim tan *x* 68. $\lim_{x \to 1} \arccos \frac{x}{2}$ **67.** $\lim_{x \to 1/2} \arcsin x$

EXPLORATION

TRUE OR FALSE? In Exercises 69 and 70, determine whether the statement is true or false. Justify your answer.

69. The limit of a function as x approaches c does not exist if the function approaches -3 from the left of c and 3 from the right of c.

- **70.** The limit of the product of two functions is equal to the product of the limits of the two functions.
- 71. THINK ABOUT IT From Exercises 7–12, select a limit that can be reached and one that cannot be reached.
 - (a) Use a graphing utility to graph the corresponding functions using a standard viewing window. Do the graphs reveal whether or not the limit can be reached? Explain.
 - (b) Use a graphing utility to graph the corresponding functions using a *decimal* setting. Do the graphs reveal whether or not the limit can be reached? Explain.
- 72. THINK ABOUT IT Use the results of Exercise 71 to draw a conclusion as to whether or not you can use the graph generated by a graphing utility to determine reliably if a limit can be reached.

73. THINK ABOUT IT

- (a) If f(2) = 4, can you conclude anything about lim f(x)? Explain your reasoning.
- (b) If lim _{x→2} f(x) = 4, can you conclude anything about f(2)? Explain your reasoning.
- **74. WRITING** Write a brief description of the meaning of the notation $\lim_{x \to 5} f(x) = 12$.
- **75. THINK ABOUT IT** Use a graphing utility to graph the tangent function. What are $\lim_{x\to 0} \tan x$ and $\lim_{x\to \pi/4} \tan x$? What can you say about the existence of the limit $\lim_{x\to \pi/2} \tan x$?
 - **76. CAPSTONE** Use the graph of the function *f* to decide whether the value of the given quantity exists. If it does, find it. If not, explain why.

