1 What transformations have occurred to create the function $f(x)=3 x^{3}-4$ from the function $g(x)=x^{3}$?

A The graph of the function has been stretched horizontally and shifted up four units.

B The graph of the function has been stretched vertically and shifted up four units.

C The graph of the function has been stretched horizontally and shifted down four units.

D The graph of the function has been stretched vertically and shifted down four units.

2 An object is launched straight upward from ground level with an initial velocity of 50.0 feet per second. The height, h (in feet above ground level), of the object t seconds after the launch is given by the function $h(t)={ }^{-16} t^{2}+50 t$. At approximately what value of t will the object have a height of 28.0 feet and be traveling downward?

A $\quad 2.39$ seconds
B $\quad 1.84$ seconds
C $\quad 1.56$ seconds
D 0.73 seconds

3 What is the range of the function $f(x)=-5-2(x+3)^{2}$?
A $[-5, \infty)$
B $\quad(-\infty, 5]$
C $\quad(-\infty,-5]$
D $\quad(-\infty, \infty)$

4 A wind that is blowing from the northwest toward the southeast can be represented by a vector. The vector has an eastward component and a southward component. If the eastward component has a magnitude of 5.00 miles per hour and the southward component has a magnitude of 15.00 miles per hour, in what direction is the wind blowing?

A The wind is blowing in the direction 71.6° east of south.
B The wind is blowing in the direction 67.5° east of south.
C The wind is blowing in the direction 22.5° east of south.
D The wind is blowing in the direction 18.4° east of south.
$5 \quad$ What value of x satisfies the equation $\log _{3}(x-4)=2$?
A 5
B 10
C 12
D 13

6 A man is standing on level ground 50 feet away from the wall of a building. He looks up at a window on the building. The angle of elevation to the bottom of the window is 28.5°. He then looks up at the top of the building. The angle of elevation to the top of the building is 35°. What is the approximate distance between the bottom of the window and the top of the building?

A 5.7 feet
B $\quad 7.9$ feet
C 8.3 feet
D 8.5 feet

Triangle $W X Y$ has the following properties:

- The angle at vertex W is 14°, and the angle at vertex X is obtuse.
- The side opposite vertex W has a length of 7.00 units.
- The side opposite vertex X has a length of 9.00 units.

What is the approximate length of the side opposite vertex Y ?
A $\quad 1.73$ units
B $\quad 2.08$ units
C 3.26 units
D 5.40 units

Consider these two trigonometric functions:

$$
\begin{gathered}
f(x)=3 \sin (2 x)+4 \\
g(x)=3 \sin \left(2 x-\frac{\pi}{2}\right)+4
\end{gathered}
$$

How should the graph of f be shifted to produce the graph of g ?
A Shift the graph of f to the left $\frac{\pi}{4}$ units to produce the graph of g.
B Shift the graph of f to the right $\frac{\pi}{4}$ units to produce the graph of g.
C Shift the graph of f to the left $\frac{\pi}{2}$ units to produce the graph of g.
D Shift the graph of f to the right $\frac{\pi}{2}$ units to produce the graph of g.

9 The maximum height, in inches, a ball reaches after its first four bounces is shown in the table below.

Bounce Number	Height (in inches)
1	42.0
2	31.5
3	23.6
4	17.7

Which type of function best models the data and why?
A an exponential function, because the height of the ball is decreasing by 25% with each bounce

B an exponential function, because the height of the ball is decreasing by 75% with each bounce

C a logistic function, because the height of the ball is decreasing by 25% with each bounce

D a logistic function, because the height of the ball is decreasing by 75% with each bounce

10 What is the inverse function of $g(x)=x^{3}-2$?
A $\quad g^{-1}(x)=\sqrt[3]{x+2}$
B $\quad g^{-1}(x)=\sqrt[3]{x-2}$
C $\quad g^{-1}(x)=\sqrt[3]{x}+2$
D $\quad g^{-1}(x)=\left(\frac{x-2}{3}\right)^{3}$

11 What are the polar coordinates of the point $(-2 \sqrt{3}, 2 \sqrt{3})$, where $0 \leq \theta \leq 360$?
A $\left(2 \sqrt{6}, 150^{\circ}\right)$ and $\left(-2 \sqrt{6}, 210^{\circ}\right)$
B $\quad\left(2 \sqrt{6}, 135^{\circ}\right)$ and $\left(-2 \sqrt{6}, 315^{\circ}\right)$
C $\left(2 \sqrt{6}, 120^{\circ}\right)$ and $\left(-2 \sqrt{6}, 240^{\circ}\right)$
D $\quad\left(2 \sqrt{6}, 30^{\circ}\right)$ and $\left(-2 \sqrt{6}, 330^{\circ}\right)$

12 Which equation is the rectangular form of the polar equation $r=\frac{2}{1+\cos \theta}$?
A $x^{2}+4 y=4$
B $\quad x^{2}+y^{2}=4$
C $\quad y^{2}+4 x=4$
D $y^{2}-4 x=4$

13 Two parametric equations are shown below, where $t \geq 0$.

$$
\begin{aligned}
& x=\frac{1}{3} \sqrt{t}+3 \\
& y=4 t^{2}-7
\end{aligned}
$$

Which nonparametric equation can be used to graph the curve described by the parametric equations?

A $\quad y=\frac{4}{9}(x+1)-7$
B $\quad y=\frac{4}{3}(x+3)-7$
C $\quad y=36(x-1)^{4}-7$
D $\quad y=324(x-3)^{4}-7$

14 The formula for a sequence is shown below.

$$
a_{n}=2 a_{n-1}+3, a_{1}=3
$$

Which is another formula that represents the sequence?
A $\quad f(n)=3\left(2^{n}-1\right)$
B $\quad f(n)=2 n^{3}-3 n^{2}+8 n+3$
C $\quad f(n)=2\left(n^{2}+1\right)$
D $\quad f(n)=3 n^{2}+8 n-1$

15 When $a_{1}=25,000$, what is the sum of the infinite sequence defined by the equation $a_{n+1}=0.8 a_{n}$?

A 125,000
B 140,000
C 160,000
D 195,000

16 What is the end behavior of the function $f(x)=\frac{100}{1+5(0.75)^{x}}$?
A $\quad \lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=\infty$
B $\quad \lim _{x \rightarrow-\infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=100$
C $\lim _{x \rightarrow-\infty} f(x)=1$ and $\lim _{x \rightarrow \infty} f(x)=\infty$
D $\lim _{x \rightarrow-\infty} f(x)=1$ and $\lim _{x \rightarrow \infty} f(x)=100$

17 In the piecewise function below, k is a constant.

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}-\mathrm{k}^{2}}{x-\mathrm{k}}, x \neq \mathrm{k} \\
4-\mathrm{k}, x=\mathrm{k}
\end{array}\right.
$$

What is the value of the limit $\lim _{x \rightarrow \mathrm{k}^{-}} f(x)$?
A $\quad-2 k$
B $\quad 2 k$
C 0
D Limit does not exist.

18 What is the value of $\lim _{x \rightarrow 3}\left(x^{2}-3 x+7\right)$?
A -2
B 7
C 25
D Limit does not exist.

19 What is the approximate measure of angle x in the triangle below?

A 60.3°
B $\quad 80.4^{\circ}$
C $\quad 117.1^{\circ}$
D $\quad 130.5^{\circ}$

20 The temperature, in degrees F, of the water in a large fish tank is modeled by the function $T(x)=\ln (1+x)+52.4$, where x is the number of pebbles in the tank.
Approximately how many pebbles are in the tank if the water is $58.3^{\circ} \mathrm{F}$?
A 360
B 300
C 270
D 200

21 A series is shown below.

$$
1+\frac{2}{5}+\frac{4}{25}+\frac{8}{125}+\ldots
$$

Which statement is true about the sum of the series?
A The series converges to $\frac{7}{3}$.
B \quad The series converges to $\frac{5}{2}$.
C The series converges to $\frac{5}{3}$.
D The series diverges.

22 A circle is graphed using the parametric equations shown below.

$$
\begin{aligned}
& x=5 \cos (t)+3 \\
& y=5 \sin (t)-1
\end{aligned}
$$

Where is the center of the circle located?
A $(-3,-1)$
B $(-3,1)$
C $(3,-1)$
D $(3,1)$

23 The polar coordinates of a point are $\left(6, \frac{4 \pi}{3}\right)$. What are the rectangular coordinates of the point?

A $(3,-3 \sqrt{3})$
B $\quad(3,3 \sqrt{3})$
C $\quad(-3,-3 \sqrt{3})$
D $(-3,3 \sqrt{3})$

