EXERCISES FOR SECTION

Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the integrand. Use the graph to determine whether the definite integral is positive, negative, or zero.

1.
$$\int_0^{\pi} \frac{4}{x^2 + 1} dx$$
 2. $\int_0^{\pi} \cos x \, dx$

$$2. \int_0^{\pi} \cos x \, dx$$

3.
$$\int_{-2}^{2} x \sqrt{x^2 + 1} \, dx$$

3.
$$\int_{-2}^{2} x \sqrt{x^2 + 1} \, dx$$
 4. $\int_{-2}^{2} x \sqrt{2 - x} \, dx$

In Exercises 5–26, evaluate the definite integral of the algebraic function. Use a graphing utility to verify your result.

$$5. \int_0^1 2x \, dx$$

6.
$$\int_{2}^{7} 3 \, dv$$

7.
$$\int_{-1}^{0} (x-2) dx$$

8.
$$\int_{2}^{5} (-3v + 4) dv$$

9.
$$\int_{-1}^{1} (t^2 - 2) dt$$

10.
$$\int_{1}^{3} (3x^2 + 5x - 4) dx$$

11.
$$\int_0^1 (2t-1)^2 dt$$

12.
$$\int_{-1}^{1} (t^3 - 9t) dt$$

13.
$$\int_{1}^{2} \left(\frac{3}{x^2} - 1 \right) dx$$

14.
$$\int_{-2}^{-1} \left(u - \frac{1}{u^2} \right) du$$

$$15. \int_1^4 \frac{u-2}{\sqrt{u}} du$$

16.
$$\int_{-3}^{3} v^{1/3} dv$$

17.
$$\int_{-1}^{1} (\sqrt[3]{t} - 2) dt$$

18.
$$\int_{-\infty}^{3} \sqrt{\frac{2}{r}} dx$$

19.
$$\int_0^1 \frac{x - \sqrt{x}}{3} dx$$

17.
$$\int_{-1}^{1} (\sqrt[3]{t} - 2) dt$$
18. $\int_{1}^{8} \sqrt{\frac{2}{x}} dx$
19. $\int_{0}^{1} \frac{x - \sqrt{x}}{3} dx$
20. $\int_{0}^{2} (2 - t) \sqrt{t} dt$

21.
$$\int_{-1}^{0} \left(t^{1/3} - t^{2/3} \right) dt$$
 22.
$$\int_{-8}^{-1} \frac{x - x^2}{2\sqrt[3]{x}} dx$$

$$22. \int_{-8}^{-1} \frac{x - x^2}{2\sqrt[3]{x}} dx$$

23.
$$\int_0^3 |2x - 3| \, dx$$

23.
$$\int_0^3 |2x-3| dx$$
 24. $\int_1^4 (3-|x-3|) dx$

25.
$$\int_0^3 |x^2 - 4| \ dx$$

26.
$$\int_{0}^{4} |x^{2} - 4x + 3| dx$$

In Exercises 27-32, evaluate the definite integral of the trigonometric function. Use a graphing utility to verify your result.

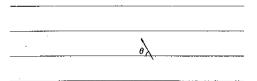
27.
$$\int_0^{\pi} (1 + \sin x) \, dx$$

27.
$$\int_0^{\pi} (1 + \sin x) dx$$
 28. $\int_0^{\pi/4} \frac{1 - \sin^2 \theta}{\cos^2 \theta} d\theta$

$$29. \int_{-\pi/6}^{\pi/6} \sec^2 x \, dx$$

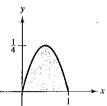
$$30. \int_{\pi/4}^{\pi/2} (2 - \csc^2 x) \, dx$$

31.
$$\int_{-\pi/3}^{\pi/3} 4 \sec \theta \tan \theta d\theta$$

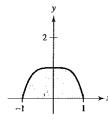

31.
$$\int_{-\pi/3}^{\pi/3} 4 \sec \theta \tan \theta d\theta$$
 32. $\int_{-\pi/2}^{\pi/2} (2t + \cos t) dt$

33. Depreciation A company purchases a new machine for which the rate of depreciation is $dV/dt = 10,000(t-6), 0 \le t \le 5$. where V is the value of the machine after t years. Set up and evaluate the definite integral that yields the total loss of value of the machine over the first 3 years.

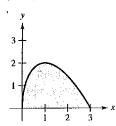
34. Buffon's Needle Experiment A horizontal plane is ruled in parallel lines 2 inches apart. If a 2-inch needle is tossed randor onto the plane, the probability that the needle will touch a lin

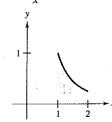

$$P = \frac{2}{\pi} \int_0^{\pi/2} \sin \theta \, d\theta$$

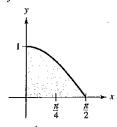
where θ is the acute angle between the needle and any one the parallel lines. Find this probability.



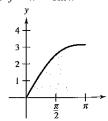
In Exercises 35-40, determine the area of the indicated region


35.
$$y = x - x^2$$





37.
$$y = (3 - x)\sqrt{x}$$



39. $y = \cos x$

40. $y = x + \sin x$

In Exercises 41-44, find the area of the region bounded by t graphs of the equations.

41.
$$y = 3x^2 + 1$$
, $x = 0$,

$$x=0$$
,

$$= 2$$
 $v = 0$

42.
$$y = 1 + \sqrt[3]{x}$$
 $x = 0$, $x = 8$,

$$r = 0$$

43.
$$y = x^3 + x$$
,

$$x=2$$
,

$$x - o$$
,

44.
$$y = -x^2 + 3x$$
,

$$v = 0$$

$$y = 0$$

in lovercises 45-48, find the value(s) of c guaranteed by the tent Value Theorem for Integrals for the function over the nditratted interval.

utinction	Interval		
$f(x) = x - 2\sqrt{x}$	[0, 2]		
$f(0,f(0)) = \frac{9}{x^3}$	[1, 3]		
$y_{i,f}(x) = 2 \sec^2 x$	$[-\pi/4, \pi/4]$		
$(3) f(x) = \cos x$	$[-\pi/3, \pi/3]$		

mistorcises 49-52, find the average value of the function over definiterval and all values of x in the interval for which the funcioneguals its average value.

Klynction	Interval		
$(0, f(0))^{1/2} = 4 - x^2$	[-2, 2]		
$(1), f(x) = \frac{4(x^2 + 1)}{x^2}$	[1, 3]		
$\eta_{x} f(x) = \sin x$	$[0, \pi]$		
$2. f(x) = \cos x$	$[0, \pi/2]$		

Getting at the Concept.

- 33. State the Fundamental Theorem of Calculus.
- The graph of f is given in the figure.
 - (a) Evaluate $\int_{-1}^{1} f(x) dx$.
 - (b) Determine the average value of f on the interval [1, 7].
 - c) Determine the answers to parts (a) and (b) if the graph is translated two units úpward.

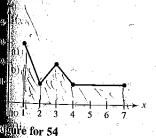


Figure for 55-60

Exercises 55–60, use the graph of f shown in the figure. shaded region A has an area of 1.5, and $\int_0^6 f(x) dx = 3.5$. lse this information to fill in the blanks.

$$\int_{0}^{2} f(x) dx = \frac{1}{2} \int_{0}^{6} f(x) dx = \frac{1}{2} \int_{0}^{6} [f(x)] dx = \frac{1}{2} \int_{0}^{6} [2 + f(x)] dx = \frac{1}{2} \int_{0}^{6} [2 + f(x)]$$

The average value of f over the interval [0, 6] is [0, 6].

- 61. Force The force F (in newtons) of a hydraulic cylinder in a press is proportional to the square of $\sec x$, where x is the distance (in meters) that the cylinder is extended in its cycle. The domain of F is $[0, \pi/3]$, and F(0) = 500.
 - (a) Find F as a function of x.
 - (b) Find the average force exerted by the press over the interval $[0, \pi/3]$
- **62.** Blood Flow The velocity ν of the flow of blood at a distance rfrom the central axis of an artery of radius R is

$$v = k(R^2 - r^2)$$

where k is the constant of proportionality. Find the average rate of flow of blood along a radius of the artery. (Use 0 and R as the limits of integration.)

63. Respiratory Cycle The volume V in liters of air in the lungs during a 5-second respiratory cycle is approximated by the

$$V = 0.1729t + 0.1522t^2 - 0.0374t^3$$

where t is the time in seconds. Approximate the average volume of air in the lungs during one cycle.

Average Profit A company introduces a new product, and the profit in thousands of dollars over the first 6 months is approximated by the model

$$P = 5(\sqrt{t} + 30), \qquad t = 1, 2, 3, 4, 5, 6.$$

(a) Use the model to complete the table and use the entries to calculate (arithmetically) the average profit over the first 6 months.

t	1	2	3	4	5	6
P	-					

- (b) Find the average value of the profit function by integration and compare the result with that in part (a). (Integrate over the interval [0.5, 6.5].)
- (c) What, if any, is the advantage of using the approximation of the average given by the definite integral? (Note that the integral approximation utilizes all real values of t in the interval rather than just integers.)
- 65. Average Sales A company fit a model to the monthly sales data of a seasonal product. The model is

$$S(t) = \frac{t}{4} + 1.8 + 0.5 \sin\left(\frac{\pi t}{6}\right), \quad 0 \le t \le 24$$

where S is sales (in thousands) and t is time in months.

- (a) Use a graphing utility to graph $f(t) = 0.5 \sin(\pi t/6)$ for $0 \le t \le 24$. Use the graph to explain why the average value. of f(t) is 0 over the interval.
- (b) Use a graphing utility to graph S(t) and the line g(t) = t/4 + 1.8 in the same viewing window. Use the graph and the result of part (a) to explain why g is called the trend line.