\qquad

Use the figure on the right to answer \#1 to \#8.

1. What are the critical values of $f(t)$?
(A) b, d
(B) $0, b, d$
(C) $0, b, d, f$
(D) $0, c, f$
(E) $0, c$
2. When is $f(t)$ increasing?
(A) $\quad(-\infty, 0)$ and (b, d)
(B) $(0, b)$ and $(d,+\infty)$
(C) $(-\infty, c)$ and $(f,+\infty)$
(D) (c, f)
(E) $\quad(a, c)$ and (e, f)
(F) $\quad(-\infty, a),(c, e)$, and $(f,+\infty)$

3. When is $f(t)$ decreasing?
(A) $\quad(-\infty, 0)$ and (b, d)
(B) $(0, b)$ and $(d,+\infty)$
(C) $(-\infty, c)$ and $(f,+\infty)$
(D) (c, f)
(E) (a, c) and (e, f)
(F) $\quad(-\infty, a),(c, e)$, and $(f,+\infty)$
4. For each value of t below, classify $f(t)$ as a relative maximum, minimum, or neither.
0 \qquad
a \qquad
b \qquad c \qquad
d \qquad
e \qquad
f
5. What are the possible points of inflection of $f(t)$?
(A) $0, a, c$
(B) a, c
(C) $0, b, d$
(D) b, d
(E) 0
(F) $0, b, d, f$
6. When is $f(t)$ concaving down?
(A) $(-\infty, 0)$ and (b, d)
(B) $(0, b)$ and $(d,+\infty)$
(C) $(-\infty, c)$ and $(f,+\infty)$
(D) (c, f)
(E) $\quad(a, c)$ and (e, f)
(F) $(-\infty, a),(c, e)$, and $(f,+\infty)$
7. When is $f(t)$ concaving up?
(A) $\quad(-\infty, 0)$ and (b, d)
(B) $(0, b)$ and $(d,+\infty)$
(C) $(-\infty, c)$ and $(f,+\infty)$
(D) (c, f)
(E) $\quad(a, c)$ and (e, f)
(F) $(-\infty, a),(c, e)$, and $(f,+\infty)$
8. Sketch a graph of $f(t)$. Suppose $f(0)=0$.

9. On what interval is $f(x)=x^{3}+x$ concave up?
(A) $(-\infty,+\infty)$
(B) $(0,+\infty)$
(C) $(-\infty, 0)$
(D) $(0,1)$
(E) $(-1,0)$
10. The absolute maximum of $f(x)=\frac{x}{x^{2}+1}$ is
(A) 0
(B) .25
(C) .5
(D) .75
(E) 1
11. On what interval(s) is the graph of $f(x)=\frac{x}{x^{2}+1}$ concave down?
(A) $(0, \sqrt{3})$
(B) $(-\sqrt{3}, 0)$
(C) $(-\sqrt{3}, 0) \cup(0,+\infty)$
(D) $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$
(E) $(\sqrt{3},+\infty)$

12. The graph of f^{\prime}, the derivative of the function f, is shown above. Which of the following statements is true about f ?
(A) f is decreasing for $-1 \leq x \leq 1$
(B) f is increasing for $-2 \leq x \leq 0$
(C) f is increasing for $-1 \leq x \leq 2$
(D) f has a local minimum at $x=0$
(E) f is not differentiable at $x=-1$ and $x=1$

13. The second derivative of the function f is given by $f^{\prime \prime}(x)=x(x-a)(x-b)^{2}$. The graph of $f^{\prime \prime}$ is shown above. For what values of x does the graph of f have a point of inflection?
(A) 0 and a only
(B) 0 and m only
(C) b and j only
(D) $0, a$ and b
(E) b, j, and k
14. Over which interval(s) are the signs of both f^{\prime} and $f^{\prime \prime}$ the same for $f(x)=3 x^{4}-4 x^{3}+6$?
(A) $\left(0, \frac{2}{3}\right)$
(B) $(-\infty, 0)$
(C) $(-\infty, 0) \cup\left(\frac{2}{3},+\infty\right)$
(D) $\left(0, \frac{2}{3}\right) \cup(1,+\infty)$
(E) $\left(\frac{2}{3},+\infty\right)$
15. Use the your work in \#14 to sketch $f(x)=3 x^{4}-4 x^{3}+6$.

Classify the critical points for the following function as a relative maximum, relative minimum, or neither; determine intervals of concave up or down; then sketch the graph.
16. $f(x)=\frac{x}{x^{2}-1}$
relative maximum:

relative minimum:
neither:

$f(x)$ concaving up:
$f(x)$ concaving down:

Classify the critical points for the following function as a relative maximum, relative minimum, or neither; determine intervals of concave up or down; then sketch the graph.
17. $f(x)=\frac{1}{3} x^{3}-2 \ln |x|$
relative maximum:

relative minimum:
neither:

$f(x)$ concaving up:
$f(x)$ concaving down:

