4.8 ... APPLICATIONS AND MODELS

APPLICATIONS

EXAMPLE #1...Solve the right triangle below.

• Previously, we defined an ANGLE OF ELEVATION to be the angle from the horizontal UPWARD.

• Also, we defined an ANGLE OF DEPRESSION to be the angle from the horizontal DOWNWARD.

EXAMPLE #2...If the angle of elevation of the sun is 28°, find the height of a tree that casts a 150-foot shadow.

EXAMPLE #3...At a point 200 feet from the base of a building, the angle of elevation to the bottom of a smokestack is 35° , and the angle of elevation to the top is 53° . Find the height *s* of the smokestack alone.

TRIGONOMETRY AND BEARINGS

• Directions are generally given in terms of *BEARINGS* and measure the *ACUTE ANGLE* a path or line of sight makes with a fixed *NORTH-SOUTH* line.

EAST OF SOUTH	WEST OF SOUTH	WEST OF NORTH	EAST OF NORTH
5 30° E	5 45° W/	N 75° W	N 35° <i>E</i>

EXAMPLE #4...Write the bearing for the path shown in the diagram below.

EXAMPLE #5...A ship leaves port at noon and heads due west at 20 knots. At 2 *P.M.* the ship changes course to $N 54^{\circ} W$. Find the ship's bearings and distance from the port of departure at 3 *P.M.*

EXAMPLE #6...A ship is 40 miles west and 15 miles south of port. If the captain wants to sail directly to port, what bearing should be taken?

HARMONIC MOTION

• SIMPLE HARMONIC MOTION can be described by a SINE or COSINE curve.

DEFINITION OF SIMPLE HARMONIC MOTION

A point that moves on a coordinate line is said to be in *SIMPLE HARMONIC MOTION* if its distance d from the origin at time t is given by either...

 $d = a \sin \omega t$ or $d = a \cos \omega t$

where a and ω are real numbers such that $\omega > 0$. The motion has amplitude |a|, period $\frac{2\pi}{\omega}$, and frequency $\frac{\omega}{2\pi}$.

PERIOD IS $\frac{2\pi}{\omega}$

FREQUENCY $\frac{\omega}{2\pi}$

EXAMPLE #7...Given the equation for simple harmonic motion $d' = 3 \sin \frac{t}{2}$, find:

A. the maximum displacement,

B. the frequency of the simple harmonic motion, and

C. the period of the simple harmonic motion.