4.8...APPLICATIONS AND MODELS

APPLICATIONS

EXAMPLE \#1...Solve the right triangle below.

- Previously, we defined an ANGLE OF ELEVATION to be the angle from the horizontal UPWARD.

- Also, we defined an ANGLE OF DEPRESSION to be the angle from the horizontal DOWNWARD.

EXAMPLE \#2...If the angle of elevation of the sun is 28°, find the height of a tree that casts a 150 -foot shadow.

EXAMPLE \#3...At a point 200 feet from the base of a building, the angle of elevation to the bottom of a smokestack is 35°, and the angle of elevation to the top is 53°. Find the height s of the smokestack alone.

TRIGONOMETRY AND BEARINGS

- Directions are generally given in terms of BEARINGS and measure the ACUTE ANGLE a path or line of sight makes with a fixed NORTH-SOUTH line.

EAST OF SOUTH	WEST OF SOUTH	WEST OF NORTH	EAST OF NORTH
		\qquad	
$S 30^{\circ} \mathrm{E}$	$s 45^{\circ} W$	$N 75^{\circ} \mathrm{W}$	$N 35^{\circ} \mathrm{E}$

EXAMPLE \#4...Write the bearing for the path shown in the diagram below.

EXAMPLE \#5...A ship leaves port at noon and heads due west at 20 knots. At 2 P.M. the ship changes course to $N 54^{\circ} W$. Find the ship's bearings and distance from the port of departure at 3 P.M.

EXAMPLE \#6...A ship is 40 miles west and 15 miles south of port. If the captain wants to sail directly to port, what bearing should be taken?

HARMONIC MOTION

- SIMPLE HARMONIC MOTION can be described by a SINE or COSINE curve.

DEFINITION OF SIMPLE HARMONIC MOTION

A point that moves on a coordinate line is said to be in SIMPLE HARMONIC MOTION if its distanced from the origin at timet is given by either...

$$
d=a \sin \omega t \quad \text { or } \quad d=a \cos \omega t
$$

where a and ω are real numbers such that $\omega>0$. The motion has amplitude $|a|$, period $\frac{2 \pi}{\omega}$, and frequency $\frac{\omega}{2 \pi}$.

$$
\text { PERIOD IS } \frac{2 \pi}{\omega}
$$

EXAMPLE \#7.... Given the equation for simple harmonic motiond $=3 \sin \frac{t}{2}$, find:
A. the maximum displacement,
B. the frequency of the simple harmonic motion, and
C. the period of the simple harmonic motion.

