

SKILLS AND APPLICATIONS

In Exercises 5-20, evaluate the expression without using a calculator.

In Exercises 21 and 22, use a graphing utility to graph f, g, and y = x in the same viewing window to verify geometrically that g is the inverse function of f. (Be sure to restrict the domain of f properly.)

21. $f(x) = \sin x$, $g(x) = \arcsin x$ **22.** $f(x) = \tan x$, $g(x) = \arctan x$

In Exercises 23−40, use a calculator to evaluate the expression. Round your result to two decimal places.

23. arccos 0.37	24. arcsin 0.65
25. $\arcsin(-0.75)$	26. arccos(-0.7)
27. $\arctan(-3)$	28. arctan 25
29. $\sin^{-1} 0.31$	30. $\cos^{-1} 0.26$
31. arccos(-0.41)	32. arcsin(-0.125)
33. arctan 0.92	34. arctan 2.8
35. $\arcsin \frac{7}{8}$	36. $\arccos(-\frac{1}{3})$
37. $\tan^{-1} \frac{19}{4}$	38. $\tan^{-1}\left(-\frac{95}{7}\right)$
39. $\tan^{-1}(-\sqrt{372})$	40. $\tan^{-1}(-\sqrt{2165})$

In Exercises 41 and 42, determine the missing coordinates of the points on the graph of the function.

In Exercises 43–48, use an inverse trigonometric function to write θ as a function of *x*.

In Exercises 49–54, use the properties of inverse trigonometric functions to evaluate the expression.

49.	sin(arcsin 0.3)	50.	tan(arctan 45)
51.	$\cos[\arccos(-0.1)]$	52.	sin[arcsin(-0.2)]
53.	$\arcsin(\sin 3\pi)$	54.	$\arccos\left(\cos\frac{7\pi}{2}\right)$

In Exercises 55–66, find the exact value of the expression. (*Hint:* Sketch a right triangle.)

55.
$$sin(arctan \frac{3}{4})$$
 56. $sec(arcsin \frac{4}{5})$

 57. $cos(tan^{-1} 2)$
 58. $sin(cos^{-1} \frac{\sqrt{5}}{5})$

 59. $cos(arcsin \frac{5}{13})$
 60. $csc[arctan(-\frac{5}{12})]$

 61. $sec[arctan(-\frac{3}{5})]$
 62. $tan[arcsin(-\frac{3}{4})]$

 63. $sin[arccos(-\frac{2}{3})]$
 64. $cot(arctan \frac{5}{8})$

 65. $csc\left[cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$
 66. $sec\left[sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right]$

- In Exercises 67–76, write an algebraic expression that is equivalent to the expression. (*Hint:* Sketch a right triangle, as demonstrated in Example 7.)
 - **67.** cot(arctan *x*)
 - **68.** sin(arctan *x*)
 - 69. $\cos(\arcsin 2x)$
 - **70.** sec(arctan 3*x*)
 - **71.** sin(arccos x)
 - **72.** sec[arcsin(x 1)]

73. $\tan\left(\arccos\frac{x}{3}\right)$ 74. $\cot\left(\arctan\frac{1}{x}\right)$ 75. $\csc\left(\arctan\frac{x}{\sqrt{2}}\right)$

- **76.** $\cos\left(\arcsin\frac{x-h}{r}\right)$
- In Exercises 77 and 78, use a graphing utility to graph f and g in the same viewing window to verify that the two functions are equal. Explain why they are equal. Identify any asymptotes of the graphs.

77.
$$f(x) = \sin(\arctan 2x), \quad g(x) = \frac{2x}{\sqrt{1+4x^2}}$$

78. $f(x) = \tan\left(\arccos \frac{x}{2}\right), \quad g(x) = \frac{\sqrt{4-x^2}}{x}$

In Exercises 79–82, fill in the blank.

79.
$$\arctan \frac{9}{x} = \arcsin(200), \quad x \neq 0$$

80. $\arcsin \frac{\sqrt{36 - x^2}}{6} = \arccos(200), \quad 0 \le x \le 6$
81. $\arccos \frac{3}{\sqrt{x^2 - 2x + 10}} = \arcsin(200)$

82.
$$\arccos \frac{x-2}{2} = \arctan(2), |x-2| \le 2$$

In Exercises 83 and 84, sketch a graph of the function and compare the graph of *g* with the graph of $f(x) = \arcsin x$.

83.
$$g(x) = \arcsin(x - 1)$$

84. $g(x) = \arcsin\frac{x}{2}$

rightarrow In Exercises 85–90, sketch a graph of the function.

85.
$$y = 2 \arccos x$$

86. $g(t) = \arccos(t + 2)$
87. $f(x) = \arctan 2x$
88. $f(x) = \frac{\pi}{2} + \arctan x$
89. $h(v) = \tan(\arccos v)$
90. $f(x) = \arccos \frac{x}{4}$

In Exercises 91–96, use a graphing utility to graph the function.

91.
$$f(x) = 2 \arccos(2x)$$

92. $f(x) = \pi \arcsin(4x)$
93. $f(x) = \arctan(2x - 3)$
94. $f(x) = -3 + \arctan(\pi x)$
95. $f(x) = \pi - \sin^{-1}\left(\frac{2}{3}\right)$
96. $f(x) = \frac{\pi}{2} + \cos^{-1}\left(\frac{1}{\pi}\right)$

In Exercises 97 and 98, write the function in terms of the sine function by using the identity

$$A \cos \omega t + B \sin \omega t = \sqrt{A^2 + B^2} \sin\left(\omega t + \arctan\frac{A}{B}\right).$$

Use a graphing utility to graph both forms of the function. What does the graph imply?

97.
$$f(t) = 3\cos 2t + 3\sin 2t$$

98. $f(t) = 4\cos \pi t + 3\sin \pi t$

i In Exercises 99–104, fill in the blank. If not possible, state the reason. (*Note:* The notation $x \rightarrow c^+$ indicates that x approaches c from the right and $x \rightarrow c^-$ indicates that x approaches c from the left.)

99. As $x \to 1^-$, the value of $\arcsin x \to 1^-$. **100.** As $x \to 1^-$, the value of $\arccos x \to 1^-$.

- **101.** As $x \to \infty$, the value of $\arctan x \to$.
- **102.** As $x \to -1^+$, the value of $\arcsin x \to$
- **103.** As $x \rightarrow -1^+$, the value of $\arccos x \rightarrow$
- **104.** As $x \to -\infty$, the value of $\arctan x \to$
- **105. DOCKING A BOAT** A boat is pulled in by means of a winch located on a dock 5 feet above the deck of the boat (see figure). Let θ be the angle of elevation from the boat to the winch and let *s* be the length of the rope from the winch to the boat.

- (a) Write θ as a function of *s*.
- (b) Find θ when s = 40 feet and s = 20 feet.
- **106. PHOTOGRAPHY** A television camera at ground level is filming the lift-off of a space shuttle at a point 750 meters from the launch pad (see figure). Let θ be the angle of elevation to the shuttle and let *s* be the height of the shuttle.

- (a) Write θ as a function of *s*.
- (b) Find θ when s = 300 meters and s = 1200 meters.
- **107. PHOTOGRAPHY** A photographer is taking a picture of a three-foot-tall painting hung in an art gallery. The camera lens is 1 foot below the lower edge of the painting (see figure). The angle β subtended by the camera lens *x* feet from the painting is

$$\beta = \arctan \frac{3x}{x^2 + 4}, \quad x > 0.$$

- (a) Use a graphing utility to graph β as a function of *x*.
- (b) Move the cursor along the graph to approximate the distance from the picture when β is maximum.
- (c) Identify the asymptote of the graph and discuss its meaning in the context of the problem.
- **108. GRANULAR ANGLE OF REPOSE** Different types of granular substances naturally settle at different angles when stored in cone-shaped piles. This angle θ is called the *angle of repose* (see figure). When rock salt is stored in a cone-shaped pile 11 feet high, the diameter of the pile's base is about 34 feet. (Source: Bulk-Store Structures, Inc.)

- (a) Find the angle of repose for rock salt.
- (b) How tall is a pile of rock salt that has a base diameter of 40 feet?
- **109. GRANULAR ANGLE OF REPOSE** When whole corn is stored in a cone-shaped pile 20 feet high, the diameter of the pile's base is about 82 feet.
 - (a) Find the angle of repose for whole corn.
 - (b) How tall is a pile of corn that has a base diameter of 100 feet?
- 110. ANGLE OF ELEVATION An airplane flies at an altitude of 6 miles toward a point directly over an observer. Consider θ and x as shown in the figure.

- (a) Write θ as a function of *x*.
- (b) Find θ when x = 7 miles and x = 1 mile.

on is parked 20 meters from a warehouse. Consider θ and x as shown in the figure.

- (a) Write θ as a function of *x*.
- (b) Find θ when x = 5 meters and x = 12 meters.

EXPLORATION

TRUE OR FALSE? In Exercises 112-114, determine whether the statement is true or false. Justify your answer.

- 115. Define the inverse cotangent function by restricting the domain of the cotangent function to the interval $(0, \pi)$, and sketch its graph.
- 116. Define the inverse secant function by restricting the domain of the secant function to the intervals $[0, \pi/2)$ and $(\pi/2, \pi]$, and sketch its graph.
- 117. Define the inverse cosecant function by restricting the domain of the cosecant function to the intervals $[-\pi/2, 0)$ and $(0, \pi/2]$, and sketch its graph.
- **118. CAPSTONE** Use the results of Exercises 115–117 to explain how to graph (a) the inverse cotangent function, (b) the inverse secant function, and (c) the inverse cosecant function on a graphing utility.

In Exercises 119–126, use the results of Exercises 115–117 to evaluate each expression without using a calculator.

119. arcsec $\sqrt{2}$	120. arcsec 1
121. arccot(-1)	122. $\operatorname{arccot}(-\sqrt{3})$
123. arccsc 2	124. arccsc(-1)
125. $\operatorname{arccsc}\left(\frac{2\sqrt{3}}{3}\right)$	126. $\operatorname{arcsec}\left(-\frac{2\sqrt{3}}{3}\right)$

111. SECURITY PATROL A security car with its spotlight 🕁 In Exercises 127–134, use the results of Exercises 115–117 and a calculator to approximate the value of the expression. Round your result to two decimal places.

127. arcsec 2.54	128. arcsec(-1.52)
129. arccot 5.25	130. arccot(-10)
131. $\operatorname{arccot} \frac{5}{3}$	132. $\operatorname{arccot}(-\frac{16}{7})$
133. $\operatorname{arccsc}\left(-\frac{25}{3}\right)$	134. $arccsc(-12)$

135. AREA In calculus, it is shown that the area of the region bounded by the graphs of y = 0, $y = 1/(x^2 + 1)$, x = a, and x = b is given by

Area = $\arctan b - \arctan a$

(see figure). Find the area for the following values of a and b.

(a)
$$a = 0, b = 1$$
 (b) $a = -1, b = 1$
(c) $a = 0, b = 3$ (d) $a = -1, b = 3$

🔂 136. THINK ABOUT IT Use a graphing utility to graph the functions

 $f(x) = \sqrt{x}$ and $g(x) = 6 \arctan x$.

For x > 0, it appears that g > f. Explain why you know that there exists a positive real number a such that g < f for x > a. Approximate the number a.

137. THINK ABOUT IT Consider the functions given by

 $f(x) = \sin x$ and $f^{-1}(x) = \arcsin x$.

- (a) Use a graphing utility to graph the composite functions $f \circ f^{-1}$ and $f^{-1} \circ f$.
- (b) Explain why the graphs in part (a) are not the graph of the line y = x. Why do the graphs of $f \circ f^{-1}$ and $f^{-1} \circ f$ differ?
- 138. **PROOF** Prove each identity.
 - (a) $\arcsin(-x) = -\arcsin x$
 - (b) $\arctan(-x) = -\arctan x$
 - (c) $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}, \quad x > 0$

(d)
$$\arcsin x + \arccos x = \frac{\pi}{2}$$

(e)
$$\arcsin x = \arctan \frac{x}{\sqrt{1-x^2}}$$