## 4.5 EXERCISES

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

## VOCABULARY: Fill in the blanks.

- 1. One period of a sine or cosine function is called one \_\_\_\_\_\_ of the sine or cosine curve.
- 2. The \_\_\_\_\_\_ of a sine or cosine curve represents half the distance between the maximum and minimum values of the function.
- 3. For the function given by  $y = a \sin(bx c)$ ,  $\frac{c}{b}$  represents the \_\_\_\_\_ of the graph of the function.
- 4. For the function given by  $y = d + a \cos(bx c)$ , d represents a \_\_\_\_\_\_ of the graph of the function.

## **SKILLS AND APPLICATIONS**

In Exercises 5–18, find the period and amplitude.



In Exercises 19-26, describe the relationship between the graphs of f and g. Consider amplitude, period, and shifts.

**19.** 
$$f(x) = \sin x$$
**20.**  $f(x) = \cos x$  $g(x) = \sin(x - \pi)$  $g(x) = \cos x$ **21.**  $f(x) = \cos 2x$  $g(x) = \cos(x + \pi)$ **21.**  $f(x) = \cos 2x$ **22.**  $f(x) = \sin 3x$  $g(x) = -\cos 2x$  $g(x) = \sin(-3x)$ **23.**  $f(x) = \cos x$ **24.**  $f(x) = \sin x$  $g(x) = \cos 2x$  $g(x) = \sin 3x$ **25.**  $f(x) = \sin 2x$ **26.**  $f(x) = \cos 4x$  $g(x) = 3 + \sin 2x$  $g(x) = -2 + \cos 4x$ 

In Exercises 27-30, describe the relationship between the graphs of f and g. Consider amplitude, period, and shifts.



In Exercises 31–38, graph f and g on the same set of coordinate axes. (Include two full periods.)

| <b>31.</b> $f(x) = -2 \sin x$ | <b>32.</b> $f(x) = \sin x$    |
|-------------------------------|-------------------------------|
| $g(x) = 4\sin x$              | $g(x) = \sin\frac{x}{3}$      |
| <b>33.</b> $f(x) = \cos x$    | <b>34.</b> $f(x) = 2 \cos 2x$ |
| $g(x) = 2 + \cos x$           | $g(x) = -\cos 4x$             |

| <b>35.</b> $f(x) = -\frac{1}{2}\sin\frac{x}{2}$ | <b>36.</b> $f(x) = 4 \sin \pi x$ |
|-------------------------------------------------|----------------------------------|
| $g(x) = 3 - \frac{1}{2}\sin\frac{x}{2}$         | $g(x)=4\sin\pi x-3$              |
| <b>37.</b> $f(x) = 2 \cos x$                    | <b>38.</b> $f(x) = -\cos x$      |
| $g(x) = 2\cos(x + \pi)$                         | $g(x) = -\cos(x - \pi)$          |

In Exercises 39–60, sketch the graph of the function. (Include two full periods.)

**39.**  $y = 5 \sin x$  **40.**  $y = \frac{1}{4} \sin x$  **41.**  $y = \frac{1}{3} \cos x$  **42.**  $y = 4 \cos x$  **43.**  $y = \cos \frac{x}{2}$  **44.**  $y = \sin 4x$  **45.**  $y = \cos 2\pi x$  **46.**  $y = \sin \frac{\pi x}{4}$  **47.**  $y = -\sin \frac{2\pi x}{3}$  **48.**  $y = -10 \cos \frac{\pi x}{6}$  **49.**  $y = \sin\left(x - \frac{\pi}{2}\right)$  **50.**  $y = \sin(x - 2\pi)$  **51.**  $y = 3 \cos(x + \pi)$  **52.**  $y = 4 \cos\left(x + \frac{\pi}{4}\right)$  **53.**  $y = 2 - \sin \frac{2\pi x}{3}$  **54.**  $y = -3 + 5 \cos \frac{\pi t}{12}$  **55.**  $y = 2 + \frac{1}{10} \cos 60\pi x$  **56.**  $y = 2 \cos x - 3$  **57.**  $y = 3 \cos(x + \pi) - 3$  **58.**  $y = 4 \cos\left(x + \frac{\pi}{4}\right) + 4$  **59.**  $y = \frac{2}{3} \cos\left(\frac{x}{2} - \frac{\pi}{4}\right)$ **60.**  $y = -3 \cos(6x + \pi)$ 

In Exercises 61–66, *g* is related to a parent function  $f(x) = \sin(x)$  or  $f(x) = \cos(x)$ . (a) Describe the sequence of transformations from *f* to *g*. (b) Sketch the graph of *g*. (c) Use function notation to write *g* in terms of *f*.

**61.**  $g(x) = \sin(4x - \pi)$  **62.**  $g(x) = \sin(2x + \pi)$  **63.**  $g(x) = \cos(x - \pi) + 2$  **64.**  $g(x) = 1 + \cos(x + \pi)$  **65.**  $g(x) = 2\sin(4x - \pi) - 3$ **66.**  $g(x) = 4 - \sin(2x + \pi)$ 

In Exercises 67−72, use a graphing utility to graph the function. Include two full periods. Be sure to choose an appropriate viewing window.

67. 
$$y = -2\sin(4x + \pi)$$
  
68.  $y = -4\sin\left(\frac{2}{3}x - \frac{\pi}{3}\right)$   
69.  $y = \cos\left(2\pi x - \frac{\pi}{2}\right) + 1$   
70.  $y = 3\cos\left(\frac{\pi x}{2} + \frac{\pi}{2}\right) - 2$   
71.  $y = -0.1\sin\left(\frac{\pi x}{10} + \pi\right)$   
72.  $y = \frac{1}{100}\sin 120\pi t$ 

**GRAPHICAL REASONING** In Exercises 73–76, find *a* and *d* for the function  $f(x) = a \cos x + d$  such that the graph of *f* matches the figure.



**GRAPHICAL REASONING** In Exercises 77–80, find *a*, *b*, and *c* for the function  $f(x) = a \sin(bx - c)$  such that the graph of *f* matches the figure.



- In Exercises 81 and 82, use a graphing utility to graph  $y_1$  and  $y_2$  in the interval  $[-2\pi, 2\pi]$ . Use the graphs to find real numbers *x* such that  $y_1 = y_2$ .
  - **81.**  $y_1 = \sin x$   $y_2 = -\frac{1}{2}$  **82.**  $y_1 = \cos x$  $y_2 = -1$

In Exercises 83–86, write an equation for the function that is described by the given characteristics.

**83.** A sine curve with a period of  $\pi$ , an amplitude of 2, a right phase shift of  $\pi/2$ , and a vertical translation up 1 unit

- **84.** A sine curve with a period of  $4\pi$ , an amplitude of 3, a left phase shift of  $\pi/4$ , and a vertical translation down 1 unit
- **85.** A cosine curve with a period of  $\pi$ , an amplitude of 1, a left phase shift of  $\pi$ , and a vertical translation down  $\frac{3}{2}$  units
- **86.** A cosine curve with a period of  $4\pi$ , an amplitude of 3, a right phase shift of  $\pi/2$ , and a vertical translation up 2 units
- 87. **RESPIRATORY CYCLE** For a person at rest, the velocity v (in liters per second) of airflow during a respiratory cycle (the time from the beginning of one breath to the beginning of the next) is given by  $v = 0.85 \sin \frac{\pi t}{3}$ , where *t* is the time (in seconds). (Inhalation occurs when v > 0, and exhalation occurs when v < 0.)
  - (a) Find the time for one full respiratory cycle.
  - (b) Find the number of cycles per minute.
  - (c) Sketch the graph of the velocity function.
- 88. **RESPIRATORY CYCLE** After exercising for a few minutes, a person has a respiratory cycle for which the velocity of airflow is approximated by  $v = 1.75 \sin \frac{\pi t}{2}$ , where *t* is the time (in seconds). (Inhalation occurs when v > 0, and exhalation occurs when v < 0.)
  - (a) Find the time for one full respiratory cycle.
  - (b) Find the number of cycles per minute.
  - (c) Sketch the graph of the velocity function.
- 89. DATA ANALYSIS: METEOROLOGY The table shows the maximum daily high temperatures in Las Vegas L and International Falls I (in degrees Fahrenheit) for month t, with t = 1 corresponding to January. (Source: National Climatic Data Center)

| ļ | Month, t | Las Vegas, L | International Falls, I |
|---|----------|--------------|------------------------|
|   | 1        | 57.1         | 13.8                   |
|   | 2        | 63.0         | 22.4                   |
|   | 3        | 69.5         | 34.9                   |
|   | 4        | 78.1         | 51.5                   |
|   | 5        | 87.8         | 66.6                   |
|   | 6        | 98.9         | 74.2                   |
|   | 7        | 104.1        | 78.6                   |
|   | 8        | 101.8        | 76.3                   |
|   | 9        | 93.8         | 64.7                   |
|   | 10       | 80.8         | 51.7                   |
|   | 11       | 66.0         | 32.5                   |
|   | 12       | 57.3         | 18.1                   |

(a) A model for the temperature in Las Vegas is given by

$$L(t) = 80.60 + 23.50 \cos\left(\frac{\pi t}{6} - 3.67\right).$$

Find a trigonometric model for International Falls.

- (b) Use a graphing utility to graph the data points and the model for the temperatures in Las Vegas. How well does the model fit the data?
- (c) Use a graphing utility to graph the data points and the model for the temperatures in International Falls. How well does the model fit the data?
- (d) Use the models to estimate the average maximum temperature in each city. Which term of the models did you use? Explain.
- (e) What is the period of each model? Are the periods what you expected? Explain.
- (f) Which city has the greater variability in temperature throughout the year? Which factor of the models determines this variability? Explain.
- **90. HEALTH** The function given by

$$P = 100 - 20\cos\frac{5\pi t}{3}$$

approximates the blood pressure P (in millimeters of mercury) at time t (in seconds) for a person at rest.

- (a) Find the period of the function.
- (b) Find the number of heartbeats per minute.
- **91. PIANO TUNING** When tuning a piano, a technician strikes a tuning fork for the A above middle C and sets up a wave motion that can be approximated by  $y = 0.001 \sin 880 \pi t$ , where t is the time (in seconds).
  - (a) What is the period of the function?
  - (b) The frequency f is given by f = 1/p. What is the frequency of the note?
- **92. DATA ANALYSIS: ASTRONOMY** The percents y (in decimal form) of the moon's face that was illuminated on day x in the year 2009, where x = 1 represents January 1, are shown in the table. (Source: U.S. Naval Observatory)

|   | x                                       | у   |
|---|-----------------------------------------|-----|
| 0 | 4                                       | 0.5 |
|   | 11                                      | 1.0 |
|   | 18                                      | 0.5 |
|   | 26                                      | 0.0 |
|   | 33                                      | 0.5 |
|   | 40                                      | 1.0 |
|   | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |     |