\qquad

- Evaluate trigonometric functions of any angle.
- Find reference angles.
- Evaluate trigonometric functions of real numbers.

Introduction

ntroduction

Definitions of Trigonometric Functions of Any Angle

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r=\sqrt{x^{2}+y^{2}} \neq 0$.
$\sin \theta=\frac{y}{r}$
$\cos \theta=\frac{x}{r}$
$\tan \theta=\frac{y}{x}, \quad x \neq 0 \quad \cot \theta=\frac{x}{y}, \quad y \neq 0$
$\sec \theta=\frac{r}{x}, \quad x \neq 0 \quad \csc \theta=\frac{r}{y}, \quad y \neq 0$

IFxample 1 - Evaluating Trigonometric Functions

Let $(-3,4)$ be a point on the terminal side of θ. Find the sine, cosine, and tangent of θ.

Solution:
$x=-3, y=4$,

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} \\
& =\sqrt{(-3)^{2}+4^{2}} \\
& =\sqrt{25} \\
& =5 .
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=\frac{y}{r}=\frac{4}{5} \\
& \cos \theta=\frac{x}{r}=-\frac{3}{5} \\
& \tan \theta=\frac{y}{x}=-\frac{4}{3}
\end{aligned}
$$

Introduction

Reference Angles

Reference Angles

Definition of Reference Angle

Let θ be an angle in standard position. Its reference angle is the acute angle θ^{\prime} formed by the terminal side of θ and the horizontal axis.

Reference Angles

The reference angles for θ in Quadrants II, III, and IV.

$\theta^{\prime}=\pi-\theta$ (radians)
$\theta^{\prime}=180^{\circ}-\theta$ (degrees)

$$
\begin{aligned}
& \theta^{\prime}=\theta-\pi \text { (radians) } \\
& \theta^{\prime}=\theta-180^{\circ} \text { (degrees) }
\end{aligned}
$$

$$
\begin{aligned}
& \theta^{\prime}=2 \pi-\theta \text { (radians) } \\
& \theta^{\prime}=360^{\circ}-\theta \text { (degrees) }
\end{aligned}
$$

IFxample 4 - Finding Reference Angles
Find the reference angle θ^{\prime}.
a. $\theta=300^{\circ}$
b. $\theta=2.3$
c. $\theta=-135^{\circ}$

Example 4(a) - Solution

Because 300° lies in Quadrant IV, the angle it makes with the x-axis is

$$
\begin{aligned}
\theta^{\prime} & =360^{\circ}-300^{\circ} \\
& =60^{\circ} .
\end{aligned}
$$

Degrees

Example 4(b) - Solution

Because 2.3 lies between $\pi / 2 \approx 1.5708$ and $\pi \approx 3.1416$, it follows that it is in Quadrant II and its reference angle is

$$
\begin{aligned}
\theta^{\prime} & =\pi-2.3 \\
& \approx 0.8416 .
\end{aligned}
$$

Radians

Example 4(c) - Solution

First, determine that -135° is coterminal with 225°, which lies in Quadrant III. So, the reference angle is

$$
\begin{aligned}
& \theta^{\prime}=225^{\circ}-180^{\circ} \\
&=45^{\circ} . \\
& \theta^{\prime}=45^{\circ} \text { Degrees } \\
& \text { and }
\end{aligned}
$$

Trigonometric Functions of Real Numbers

ITrigonometric Functions of Real Numbers

By definition, you know that

$$
\sin \theta=\frac{y}{r} \quad \text { and } \quad \tan \theta=\frac{y}{x} .
$$

For the right triangle with acute angle θ^{\prime} and sides of lengths $|x|$ and $|y|$, you have

$$
\sin \theta^{\prime}=\frac{\text { opp }}{\text { hyp }}=\frac{|y|}{r}
$$

and

$$
\tan \theta^{\prime}=\frac{\mathrm{opp}}{\mathrm{adj}}=\frac{|y|}{|x|} .
$$

$$
\text { opp }=|y|, \operatorname{adj}=|x|
$$

rigonometric Functions of Real Numbers

Evaluating Trigonometric Functions of Any Angle
To find the value of a trigonometric function of any angle θ :

1. Determine the function value for the associated reference angle θ^{\prime}.
2. Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

θ (degrees)	0°	30°	45°	60°	90°	180°	270°
θ (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undef.	0	Undef.

표xample 5 - Using Reference Angles

Evaluate each trigonometric function.
a. $\cos \frac{4 \pi}{3}$
b. $\tan \left(-210^{\circ}\right)$
c. $\csc \frac{11 \pi}{4}$

Because $\theta=4 \pi / 3$ lies in Quadrant III, the reference angle is

$$
\begin{aligned}
\theta^{\prime} & =\frac{4 \pi}{3}-\pi \\
& =\frac{\pi}{3}
\end{aligned}
$$

as shown in Figure 4.44.
Moreover, the cosine is negative in

Quadrant III, so

$$
\begin{aligned}
\cos \frac{4 \pi}{3} & =(-) \cos \frac{\pi}{3} \\
& =-\frac{1}{2} .
\end{aligned}
$$

Fxample 5(b) - Solution

Because $-210^{\circ}+360^{\circ}=150^{\circ}$, it follows that -210° is coterminal with the second-quadrant angle 150°.

So, the reference angle is $\theta^{\prime}=180^{\circ}-150^{\circ}=30^{\circ}$, as shown in Figure 4.45.

Figure 4.45

Finally, because the tangent is negative in Quadrant II, you have

$$
\begin{aligned}
\tan \left(-210^{\circ}\right) & =(-) \tan 30^{\circ} \\
& =-\frac{\sqrt{3}}{3} .
\end{aligned}
$$

IExample 5(c) - Solution

Because $(11 \pi / 4)-2 \pi=3 \pi / 4$, it follows that $11 \pi / 4$ is coterminal with the second-quadrant angle $3 \pi / 4$.

So, the reference angle is $\theta^{\prime}=\pi-(3 \pi / 4)=\pi / 4$, as shown in Figure 4.46.

Figure 4.46

Because the cosecant is positive in Quadrant II, you have

$$
\begin{aligned}
\csc \frac{11 \pi}{4} & =(+) \csc \frac{\pi}{4} \\
& =\frac{1}{\sin (\pi / 4)} \\
& =\sqrt{2}
\end{aligned}
$$

