

TRIGONOMETRIC FUNCTIONS OF ANY ANGLE

What You Should Learn

- Evaluate trigonometric functions of any angle.
- Find reference angles.
- Evaluate trigonometric functions of real numbers.

Introduction

ntroduction

Definitions of Trigonometric Functions of Any Angle

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$.

$$\sin \theta = \frac{y}{r}$$

$$\sin \theta = \frac{y}{r} \qquad \qquad \cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}, \quad x \neq 0$$

$$\tan \theta = \frac{y}{x}, \quad x \neq 0 \qquad \cot \theta = \frac{x}{y}, \quad y \neq 0$$

$$\sec \theta = \frac{r}{x}, \quad x \neq 0$$

$$\sec \theta = \frac{r}{x}, \quad x \neq 0 \qquad \csc \theta = \frac{r}{y}, \quad y \neq 0$$

xample 1 – Evaluating Trigonometric Functions

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

Solution:

$$x = -3$$
, $y = 4$,

$$r = \sqrt{x^2 + y^2}$$

$$= \sqrt{(-3)^2 + 4^2}$$

$$= \sqrt{25}$$

$$= 5.$$

Example 1 – Solution

$$\sin \theta = \frac{y}{r} = \frac{4}{5}$$

$$\cos \theta = \frac{x}{r} = -\frac{3}{5}$$

$$\tan \theta = \frac{y}{x} = -\frac{4}{3}$$

ntroduction

Reference Angles

Reference Angles

Definition of Reference Angle

Let θ be an angle in standard position. Its **reference angle** is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

Reference Angles

The reference angles for θ in Quadrants II, III, and IV.

$$\theta' = \pi - \theta \text{ (radians)}$$

 $\theta' = 180^\circ - \theta \text{ (degrees)}$

$$\theta' = \theta - \pi$$
 (radians)
 $\theta' = \theta - 180^{\circ}$ (degrees)

$$\theta' = 2\pi - \theta \text{ (radians)}$$

 $\theta' = 360^{\circ} - \theta \text{ (degrees)}$

Example 4 – Finding Reference Angles

Find the reference angle θ' .

a.
$$\theta$$
 = 300°

b.
$$\theta$$
 = 2.3

c.
$$\theta = -135^{\circ}$$

Example 4(a) – Solution

Because 300° lies in Quadrant IV, the angle it makes with the *x*-axis is

$$\theta' = 360^{\circ} - 300^{\circ}$$

Degrees

Example 4(b) – Solution

cont'd

Because 2.3 lies between $\pi/2 \approx 1.5708$ and $\pi \approx 3.1416$, it follows that it is in Quadrant II and its reference angle is

$$\theta' = \pi - 2.3$$

 $\approx 0.8416.$

Radians

cont'd

First, determine that -135° is coterminal with 225°, which lies in Quadrant III. So, the reference angle is

$$\theta' = 225^{\circ} - 180^{\circ}$$

Degrees

Trigonometric Functions of Real Numbers

rigonometric Functions of Real Numbers

By definition, you know that

$$\sin \theta = \frac{y}{r}$$
 and $\tan \theta = \frac{y}{x}$.

For the right triangle with acute angle θ' and sides of

lengths |x| and |y|, you have

$$\sin\theta' = \frac{\text{opp}}{\text{hyp}} = \frac{|y|}{r}$$

and

$$\tan \theta' = \frac{\text{opp}}{\text{adj}} = \frac{|y|}{|x|}.$$

opp =
$$|y|$$
, adj = $|x|$

rigonometric Functions of Real Numbers

Evaluating Trigonometric Functions of Any Angle

To find the value of a trigonometric function of any angle θ :

- 1. Determine the function value for the associated reference angle θ' .
- 2. Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

θ (degrees)	0°	30°	45°	60°	90°	180°	270°
θ (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undef.	0	Undef.

Example 5 – *Using Reference Angles*

Evaluate each trigonometric function.

a.
$$\cos \frac{4\pi}{3}$$

c. csc
$$\frac{11\pi}{4}$$

Example 5(a) – Solution

Because $\theta = 4\pi/3$ lies in Quadrant III, the reference angle

is

$$\theta' = \frac{4\pi}{3} - \pi$$
$$= \frac{\pi}{3}$$

as shown in Figure 4.44.

Figure 4.44

Moreover, the cosine is negative in Quadrant III, so

$$\cos\frac{4\pi}{3} = (-)\cos\frac{\pi}{3}$$
$$= -\frac{1}{2}.$$

Example 5(b) – Solution

cont'd

Because $-210^{\circ} + 360^{\circ} = 150^{\circ}$, it follows that -210° is coterminal with the second-quadrant angle 150°.

So, the reference angle is $\theta' = 180^{\circ} - 150^{\circ} = 30^{\circ}$, as shown

in Figure 4.45.

Figure 4.45

Example 5(b) – Solution

cont'd

Finally, because the tangent is negative in Quadrant II, you have

$$tan(-210^\circ) = (-) tan 30^\circ$$

= $-\frac{\sqrt{3}}{3}$.

Example 5(c) – Solution

cont'd

Because $(11\pi/4) - 2\pi = 3\pi/4$, it follows that $11\pi/4$ is coterminal with the second-quadrant angle $3\pi/4$.

So, the reference angle is $\theta' = \pi - (3\pi/4) = \pi/4$, as shown in Figure 4.46.

Figure 4.46

22

cont'd

Because the cosecant is positive in Quadrant II, you have

$$\csc \frac{11\pi}{4} = (+) \csc \frac{\pi}{4}$$
$$= \frac{1}{\sin(\pi/4)}$$
$$= \sqrt{2}.$$