See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

4.2 EXERCISES

VOCABULARY: Fill in the blanks.

- **1.** Each real number *t* corresponds to a point (*x*, *y*) on the _____
- **2.** A function f is ______ if there exists a positive real number c such that f(t + c) = f(t) for all t in the domain of f.
- **3.** The smallest number *c* for which a function *f* is periodic is called the ______ of *f*.
- **4.** A function *f* is _____ if f(-t) = -f(t) and _____ if f(-t) = f(t).

SKILLS AND APPLICATIONS

In Exercises 5–8, determine the exact values of the six trigonometric functions of the real number *t*.

23.	$t = \frac{11\pi}{6}$	24.	$t = \frac{5\pi}{3}$
25.	$t = -\frac{3\pi}{2}$	26.	$t = -2\pi$

In Exercises 27–34, evaluate (if possible) the six trigonometric functions of the real number.

27. $t = \frac{2\pi}{3}$	28. $t = \frac{5\pi}{6}$
29. $t = \frac{4\pi}{3}$	30. $t = \frac{7\pi}{4}$
31. $t = \frac{3\pi}{4}$	32. $t = \frac{3\pi}{2}$
33. $t = -\frac{\pi}{2}$	34. $t = -\pi$

In Exercises 9–16, find the point (x, y) on the unit circle that corresponds to the real number *t*.

9. $t = \frac{\pi}{2}$ 10. $t = \pi$ 11. $t = \frac{\pi}{4}$ 12. $t = \frac{\pi}{3}$ 13. $t = \frac{5\pi}{6}$ 14. $t = \frac{3\pi}{4}$ 15. $t = \frac{4\pi}{3}$ 16. $t = \frac{5\pi}{3}$

In Exercises 17–26, evaluate (if possible) the sine, cosine, and tangent of the real number.

17. $t = \frac{\pi}{4}$ **18.** $t = \frac{\pi}{3}$ **19.** $t = -\frac{\pi}{6}$ **20.** $t = -\frac{\pi}{4}$ **21.** $t = -\frac{7\pi}{4}$ **22.** $t = -\frac{4\pi}{3}$ In Exercises 35–42, evaluate the trigonometric function using its period as an aid.

35.
$$\sin 4\pi$$
36. $\cos 3\pi$

37. $\cos \frac{7\pi}{3}$
38. $\sin \frac{9\pi}{4}$

39. $\cos \frac{17\pi}{4}$
40. $\sin \frac{19\pi}{6}$

41. $\sin(-\frac{8\pi}{3})$
42. $\cos(-\frac{9\pi}{4})$

In Exercises 43–48, use the value of the trigonometric function to evaluate the indicated functions.

43.	$\sin t = \frac{1}{2}$	44.	$\sin(-t) = \frac{3}{8}$
	(a) $\sin(-t)$		(a) $\sin t$
	(b) $\csc(-t)$		(b) $\csc t$
45.	$\cos(-t) = -\frac{1}{5}$	46.	$\cos t = -\frac{3}{4}$
	(a) $\cos t$		(a) $\cos(-t)$
	(b) $\sec(-t)$		(b) $\sec(-t)$
47.	$\sin t = \frac{4}{5}$	48.	$\cos t = \frac{4}{5}$
	(a) $\sin(\pi - t)$		(a) $\cos(\pi - t)$
	(b) $\sin(t + \pi)$		(b) $\cos(t + \pi)$

In Exercises 49−58, use a calculator to evaluate the trigonometric function. Round your answer to four decimal places. (Be sure the calculator is set in the correct angle mode.)

49.	$\sin \frac{\pi}{4}$	50.	$\tan\frac{\pi}{3}$
51.	$\cot \frac{\pi}{4}$	52.	$\csc \frac{2\pi}{3}$
53.	$\cos(-1.7)$	54.	$\cos(-2.5)$
55.	csc 0.8	56.	sec 1.8
57.	sec(-22.8)	58.	$\cot(-0.9)$

- **59. HARMONIC MOTION** The displacement from equilibrium of an oscillating weight suspended by a spring is given by $y(t) = \frac{1}{4} \cos 6t$, where y is the displacement (in feet) and t is the time (in seconds). Find the displacements when (a) t = 0, (b) $t = \frac{1}{4}$, and (c) $t = \frac{1}{2}$.
- **60. HARMONIC MOTION** The displacement from equilibrium of an oscillating weight suspended by a spring and subject to the damping effect of friction is given by $y(t) = \frac{1}{4}e^{-t}\cos 6t$, where y is the displacement (in feet) and t is the time (in seconds).
 - (a) Complete the table.

t	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
у					

- (b) Use the *table* feature of a graphing utility to approximate the time when the weight reaches equilibrium.
 - (c) What appears to happen to the displacement as *t* increases?

EXPLORATION

TRUE OR FALSE? In Exercises 61–64, determine whether the statement is true or false. Justify your answer.

- **61.** Because sin(-t) = -sin t, it can be said that the sine of a negative angle is a negative number.
- **62.** $\tan a = \tan(a 6\pi)$
- **63.** The real number 0 corresponds to the point (0, 1) on the unit circle.

$$64. \cos\left(-\frac{7\pi}{2}\right) = \cos\left(\pi + \frac{\pi}{2}\right)$$

- **65.** Let (x_1, y_1) and (x_2, y_2) be points on the unit circle corresponding to $t = t_1$ and $t = \pi t_1$, respectively.
 - (a) Identify the symmetry of the points (x_1, y_1) and (x_2, y_2) .

- (b) Make a conjecture about any relationship between $\sin t_1$ and $\sin(\pi t_1)$.
- (c) Make a conjecture about any relationship between $\cos t_1$ and $\cos(\pi t_1)$.
- **66.** Use the unit circle to verify that the cosine and secant functions are even and that the sine, cosecant, tangent, and cotangent functions are odd.
- **67.** Verify that $\cos 2t \neq 2 \cos t$ by approximating $\cos 1.5$ and $2 \cos 0.75$.
- **68.** Verify that $\sin(t_1 + t_2) \neq \sin t_1 + \sin t_2$ by approximating $\sin 0.25$, $\sin 0.75$, and $\sin 1$.
- **69. THINK ABOUT IT** Because $f(t) = \sin t$ is an odd function and $g(t) = \cos t$ is an even function, what can be said about the function h(t) = f(t)g(t)?
- **70. THINK ABOUT IT** Because $f(t) = \sin t$ and $g(t) = \tan t$ are odd functions, what can be said about the function h(t) = f(t)g(t)?
- 71. GRAPHICAL ANALYSIS With your graphing utility in radian and parametric modes, enter the equations
 - $X_{1T} = \cos T$ and $Y_{1T} = \sin T$

and use the following settings.

Tmin = 0, Tmax = 6.3, Tstep = 0.1

Xmin = -1.5, Xmax = 1.5, Xscl = 1

Ymin = -1, Ymax = 1, Yscl = 1

- (a) Graph the entered equations and describe the graph.
- (b) Use the *trace* feature to move the cursor around the graph. What do the *t*-values represent? What do the *x*- and *y*-values represent?
- (c) What are the least and greatest values of *x* and *y*?
- **72. CAPSTONE** A student you are tutoring has used a unit circle divided into 8 equal parts to complete the table for selected values of *t*. What is wrong?

t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
x	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1
у	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0
sin t	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1
cos t	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0
tan <i>t</i>	Undef.	1	0	-1	Undef.