4.2 EXERCISES

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
VOCABULARY: Fill in the blanks.

1. Each real number t corresponds to a point (x, y) on the \qquad _.
2. A function f is \qquad if there exists a positive real number c such that $f(t+c)=f(t)$ for all t in the domain of f.
3. The smallest number c for which a function f is periodic is called the \qquad of f.
4. A function f is \qquad if $f(-t)=-f(t)$ and \qquad if $f(-t)=f(t)$.

SKILLS AND APPLICATIONS

In Exercises 5-8, determine the exact values of the six trigonometric functions of the real number t.
5.

6.

7.

8.

In Exercises 9-16, find the point (x, y) on the unit circle that corresponds to the real number t.
9. $t=\frac{\pi}{2}$
10. $t=\pi$
11. $t=\frac{\pi}{4}$
12. $t=\frac{\pi}{3}$
13. $t=\frac{5 \pi}{6}$
14. $t=\frac{3 \pi}{4}$
15. $t=\frac{4 \pi}{3}$
16. $t=\frac{5 \pi}{3}$

In Exercises 17-26, evaluate (if possible) the sine, cosine, and tangent of the real number.
17. $t=\frac{\pi}{4}$
18. $t=\frac{\pi}{3}$
19. $t=-\frac{\pi}{6}$
20. $t=-\frac{\pi}{4}$
21. $t=-\frac{7 \pi}{4}$
22. $t=-\frac{4 \pi}{3}$
23. $t=\frac{11 \pi}{6}$
24. $t=\frac{5 \pi}{3}$
25. $t=-\frac{3 \pi}{2}$
26. $t=-2 \pi$

In Exercises 27-34, evaluate (if possible) the six trigonometric functions of the real number.
27. $t=\frac{2 \pi}{3}$
28. $t=\frac{5 \pi}{6}$
29. $t=\frac{4 \pi}{3}$
30. $t=\frac{7 \pi}{4}$
31. $t=\frac{3 \pi}{4}$
32. $t=\frac{3 \pi}{2}$
33. $t=-\frac{\pi}{2}$
34. $t=-\pi$

In Exercises 35-42, evaluate the trigonometric function using its period as an aid.
35. $\sin 4 \pi$
36. $\cos 3 \pi$
37. $\cos \frac{7 \pi}{3}$
38. $\sin \frac{9 \pi}{4}$
39. $\cos \frac{17 \pi}{4}$
40. $\sin \frac{19 \pi}{6}$
41. $\sin \left(-\frac{8 \pi}{3}\right)$
42. $\cos \left(-\frac{9 \pi}{4}\right)$

In Exercises 43-48, use the value of the trigonometric function to evaluate the indicated functions.
43. $\sin t=\frac{1}{2}$
44. $\sin (-t)=\frac{3}{8}$
(a) $\sin (-t)$
(b) $\csc (-t)$
(a) $\sin t$
(b) $\csc t$
45. $\cos (-t)=-\frac{1}{5}$
(a) $\cos t$
(b) $\sec (-t)$
46. $\cos t=-\frac{3}{4}$
(a) $\cos (-t)$
(b) $\sec (-t)$
47. $\sin t=\frac{4}{5}$
(a) $\sin (\pi-t)$
(b) $\sin (t+\pi)$
48. $\cos t=\frac{4}{5}$
(a) $\cos (\pi-t)$
(b) $\cos (t+\pi)$

In Exercises 49-58, use a calculator to evaluate the trigonometric function. Round your answer to four decimal places. (Be sure the calculator is set in the correct angle mode.)
49. $\sin \frac{\pi}{4}$
50. $\tan \frac{\pi}{3}$
51. $\cot \frac{\pi}{4}$
52. $\csc \frac{2 \pi}{3}$
53. $\cos (-1.7)$
54. $\cos (-2.5)$
55. csc 0.8
56. sec 1.8
57. $\sec (-22.8)$
58. $\cot (-0.9)$
59. HARMONIC MOTION The displacement from equilibrium of an oscillating weight suspended by a spring is given by $y(t)=\frac{1}{4} \cos 6 t$, where y is the displacement (in feet) and t is the time (in seconds). Find the displacements when (a) $t=0$, (b) $t=\frac{1}{4}$, and (c) $t=\frac{1}{2}$.
60. HARMONIC MOTION The displacement from equilibrium of an oscillating weight suspended by a spring and subject to the damping effect of friction is given by $y(t)=\frac{1}{4} e^{-t} \cos 6 t$, where y is the displacement (in feet) and t is the time (in seconds).
(a) Complete the table.

t	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
y					

(b) Use the table feature of a graphing utility to approximate the time when the weight reaches equilibrium.
(c) What appears to happen to the displacement as t increases?

EXPLORATION

TRUE OR FALSE? In Exercises 61-64, determine whether the statement is true or false. Justify your answer.
61. Because $\sin (-t)=-\sin t$, it can be said that the sine of a negative angle is a negative number.
62. $\tan a=\tan (a-6 \pi)$
63. The real number 0 corresponds to the point $(0,1)$ on the unit circle.
64. $\cos \left(-\frac{7 \pi}{2}\right)=\cos \left(\pi+\frac{\pi}{2}\right)$
65. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be points on the unit circle corresponding to $t=t_{1}$ and $t=\pi-t_{1}$, respectively.
(a) Identify the symmetry of the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
(b) Make a conjecture about any relationship between $\sin t_{1}$ and $\sin \left(\pi-t_{1}\right)$.
(c) Make a conjecture about any relationship between $\cos t_{1}$ and $\cos \left(\pi-t_{1}\right)$.
66. Use the unit circle to verify that the cosine and secant functions are even and that the sine, cosecant, tangent, and cotangent functions are odd.
67. Verify that $\cos 2 t \neq 2 \cos t$ by approximating $\cos 1.5$ and $2 \cos 0.75$.
68. Verify that $\sin \left(t_{1}+t_{2}\right) \neq \sin t_{1}+\sin t_{2}$ by approximating $\sin 0.25, \sin 0.75$, and $\sin 1$.
69. THINK ABOUT IT Because $f(t)=\sin t$ is an odd function and $g(t)=\cos t$ is an even function, what can be said about the function $h(t)=f(t) g(t)$?
70. THINK ABOUT IT Because $f(t)=\sin t$ and $g(t)=\tan t$ are odd functions, what can be said about the function $h(t)=f(t) g(t)$?
71. GRAPHICAL ANALYSIS With your graphing utility in radian and parametric modes, enter the equations
$\mathrm{X}_{1 \mathrm{~T}}=\cos \mathrm{T}$ and $\mathrm{Y}_{1 \mathrm{~T}}=\sin \mathrm{T}$
and use the following settings.
Tmin $=0, \operatorname{Tmax}=6.3$, Tstep $=0.1$
$\mathrm{X} \min =-1.5, \mathrm{Xmax}=1.5, \mathrm{Xscl}=1$
$\mathrm{Y} \min =-1, \mathrm{Y} \max =1, \mathrm{Yscl}=1$
(a) Graph the entered equations and describe the graph.
(b) Use the trace feature to move the cursor around the graph. What do the t-values represent? What do the x - and y-values represent?
(c) What are the least and greatest values of x and y ?
72. CAPSTONE A student you are tutoring has used a unit circle divided into 8 equal parts to complete the table for selected values of t. What is wrong?

t	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
x	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1
y	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0
$\sin t$	1	$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	-1
$\cos t$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0
$\tan t$	Undef.	1	0	-1	Undef.

