TRIGONOMETRIC FUNCTIONS: THE UNIT CIRCLE

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Identify a unit circle and describe its relationship to real numbers.
- Evaluate trigonometric functions using the unit circle.
- Use the domain and period to evaluate sine and cosine functions.
- Use a calculator to evaluate trigonometric functions.

The Unit Circle

EThe Unit Circle

The unit circle

$$
x^{2}+y^{2}=1
$$

Each real number t also corresponds to a central angle θ (in standard position) whose radian measure is t.

The real number t is the (directional) length of the arc intercepted by the angle θ, given in radians.

The Trigonometric Functions

Trigonometric Functions

Definitions of Trigonometric Functions

Let t be a real number and let (x, y) be the point on the unit circle corresponding to t.

$$
\begin{array}{lll}
\sin t=y & \cos t=x & \tan t=\frac{y}{x}, \quad x \neq 0 \\
\csc t=\frac{1}{y}, \quad y \neq 0 & \sec t=\frac{1}{x}, \quad x \neq 0 & \cot t=\frac{x}{y}, \quad y \neq 0
\end{array}
$$

The Trigonometric Functions

The unit circle has been divided into eight equal arcs, corresponding to t-values of $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}$, and 2π.

The Trigonometric Functions

The unit circle has been divided into 12 equal arcs, corresponding to t-values of
$0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}, \frac{11 \pi}{6}$, and 2π.

IFxample 1 - Evaluating Trigonometric Functions

Evaluate the six trigonometric functions at each real number.
$\begin{array}{llll}\text { a. } t=\frac{\pi}{6} & \text { b. } t=\frac{5 \pi}{4} & \text { c. } t=0 & \text { d. } t=\pi\end{array}$
Solution:
a. $t=\frac{\pi}{6}$ corresponds to the point $(x, y)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

$$
\sin \frac{\pi}{6}=y=\frac{1}{2}
$$

$$
\cos \frac{\pi}{6}=x=\frac{\sqrt{3}}{2}
$$

$$
\begin{aligned}
& \tan \frac{\pi}{6}=\frac{y}{x}=\frac{1 / 2}{\sqrt{3} / 2}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\
& \csc \frac{\pi}{6}=\frac{1}{y}=\frac{1}{1 / 2}=2 \\
& \sec \frac{\pi}{6}=\frac{1}{x}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3} \\
& \cot \frac{\pi}{6}=\frac{x}{y}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}
\end{aligned}
$$

b. $t=\frac{5 \pi}{4}$ corresponds to the point $(x, y)=\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.

$$
\begin{aligned}
& \sin \frac{5 \pi}{4}=y=-\frac{\sqrt{2}}{2} \\
& \cos \frac{5 \pi}{4}=x=-\frac{\sqrt{2}}{2} \\
& \tan \frac{5 \pi}{4}=\frac{y}{x}=\frac{-\sqrt{2} / 2}{-\sqrt{2} / 2}=1 \\
& \csc \frac{5 \pi}{4}=\frac{1}{y}=-\frac{2}{\sqrt{2}}=-\sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sec \frac{5 \pi}{4}=\frac{1}{x}=-\frac{2}{\sqrt{2}}=-\sqrt{2} \\
& \cot \frac{5 \pi}{4}=\frac{x}{y}=\frac{-\sqrt{2} / 2}{-\sqrt{2} / 2}=1
\end{aligned}
$$

c. $t=0$ corresponds to the point $(x, y)=(1,0)$.

$$
\sin 0=y=0
$$

$\cos 0=x=1$
$\tan 0=\frac{y}{x}=\frac{0}{1}=0$
$\csc 0=\frac{1}{y}$ is undefined.
$\sec 0=\frac{1}{x}=\frac{1}{1}=1$
$\cot 0=\frac{x}{y}$ is undefined.
d. $t=\pi$ corresponds to the point $(x, y)=(-1,0)$.

$$
\begin{aligned}
& \sin \pi=y=0 \\
& \cos \pi=x=-1 \\
& \tan \pi=\frac{y}{x}=\frac{0}{-1}=0
\end{aligned}
$$

$\csc \pi=\frac{1}{y}$ is undefined.
$\sec \pi=\frac{1}{x}=\frac{1}{-1}=-1$
$\cot \pi=\frac{x}{y}$ is undefined.

Domain and Period of Sine and Cosine

Domain and Period of Sine and Cosine

The domain of the sine and cosine functions is the set of all real numbers.

$$
\begin{aligned}
& -1 \leq \quad y \quad \leq 1 \\
& -1 \leq \quad \operatorname{Sin} t \leq 1 \\
& -1 \leq \quad x \quad \leq 1 \\
& -1 \leq \cos t \leq 1
\end{aligned}
$$

Domain and Period of Sine and Cosine

$$
\begin{gathered}
t=\frac{\pi}{2}, \frac{\pi}{2}+2 \pi, \frac{\pi}{2}+4 \pi, \ldots \\
t=\frac{3 \pi}{4}, \frac{3 \pi}{4}+2 \pi, \ldots \\
t=\pi, \frac{3 \pi}{2}, \ldots \\
t=\frac{5 \pi}{4}, \frac{5 \pi}{4}+2 \pi, \ldots, t \\
t=\frac{3 \pi}{2}, \frac{3 \pi}{2}+2 \pi, \frac{3 \pi}{2}+4 \pi, \ldots
\end{gathered}
$$

$\sin (t+2 \pi n)=\sin t$
$\cos (t+2 \pi n)=\cos t$

Domain and Period of Sine and Cosine

Definition of Periodic Function

A function f is periodic if there exists a positive real number c such that

$$
f(t+c)=f(t)
$$

for all t in the domain of f. The smallest number c for which f is periodic is called the period of f.

Even and Odd Trigonometric Functions

The cosine and secant functions are even.

$$
\cos (-t)=\cos t \quad \sec (-t)=\sec t
$$

The sine, cosecant, tangent, and cotangent functions are odd.

$$
\begin{array}{ll}
\sin (-t)=-\sin t & \csc (-t)=-\csc t \\
\tan (-t)=-\tan t & \cot (-t)=-\cot t
\end{array}
$$

a. Because $\frac{13 \pi}{6}=2 \pi+\frac{\pi}{6}$, you have

$$
\begin{aligned}
\sin \frac{13 \pi}{6} & =\sin \left(2 \pi+\frac{\pi}{6}\right) \\
& =\sin \frac{\pi}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

b. Because $-\frac{7 \pi}{2}=-4 \pi+\frac{\pi}{2}$, you have

$$
\cos \left(-\frac{7 \pi}{2}\right)=\cos \left(-4 \pi+\frac{\pi}{2}\right)
$$

$$
\begin{aligned}
& =\cos \frac{\pi}{2} \\
& =0
\end{aligned}
$$

c. For $\sin t=\frac{4}{5}, \sin (-t)=-\frac{4}{5}$ because the sine function is odd.

