4.1 EXERCISES

VOCABULARY: Fill in the blanks.

- 1. _____ means "measurement of triangles."
- 2. An ______ is determined by rotating a ray about its endpoint.
- 3. Two angles that have the same initial and terminal sides are _____
- 4. One ______ is the measure of a central angle that intercepts an arc equal to the radius of the circle.
- 5. Angles that measure between 0 and $\pi/2$ are _____ angles, and angles that measure between $\pi/2$ and π are _____ angles.
- 6. Two positive angles that have a sum of $\pi/2$ are _____ angles, whereas two positive angles that have a sum of π are _____ angles.
- 7. The angle measure that is equivalent to a rotation of $\frac{1}{360}$ of a complete revolution about an angle's vertex is one _____.
- **8.** 180 degrees = _____ radians.
- 9. The ______ speed of a particle is the ratio of arc length to time traveled, and the ______ speed of a particle is the ratio of central angle to time traveled.
- **10.** The area *A* of a sector of a circle with radius *r* and central angle θ , where θ is measured in radians, is given by the formula _____.

SKILLS AND APPLICATIONS

In Exercises 11–16, estimate the angle to the nearest one-half radian.

25. (a) $\frac{11\pi}{6}$ (b) -3 **26.** (a) 4 (b) 7π

In Exercises 27–30, determine two coterminal angles (one positive and one negative) for each angle. Give your answers in radians.

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 17–22, determine the quadrant in which each angle lies. (The angle measure is given in radians.)

17. (a) $\frac{\pi}{4}$ (b) $\frac{5\pi}{4}$ **18.** (a) $\frac{11\pi}{8}$ (b) $\frac{9\pi}{8}$ **19.** (a) $-\frac{\pi}{6}$ (b) $-\frac{\pi}{3}$ **20.** (a) $-\frac{5\pi}{6}$ (b) $-\frac{11\pi}{9}$ **21.** (a) 3.5 (b) 2.25**22.** (a) 6.02 (b) -4.25

In Exercises 23–26, sketch each angle in standard position.

23. (a)
$$\frac{\pi}{3}$$
 (b) $-\frac{2\pi}{3}$ **24.** (a) $-\frac{7\pi}{4}$ (b) $\frac{5\pi}{2}$

In Exercises 31–34, find (if possible) the complement and supplement of each angle.

31.	(a)	$\pi/3$	(b)	$\pi/4$	32.	(a)	$\pi/12$	(b)	$11\pi/12$
33.	(a)	1	(b)	2	34.	(a)	3	(b)	1.5

In Exercises 35–40, estimate the number of degrees in the angle. Use a protractor to check your answer.

In Exercises 41–44, determine the quadrant in which each angle lies.

41.	(a)	130°	(b)	285°
42.	(a)	8.3°	(b)	$257^{\circ} 30'$
43.	(a)	-132° 50′	(b)	-336°
44.	(a)	-260°	(b)	-3.4°

In Exercises 45–48, sketch each angle in standard position.

45.	(a)	90°	(b)	180°	46.	(a)	270°	(b)	120°
47.	(a)	-30°	(b)	-135°	0				
48.	(a)	-750°	(b)	-600°)				

In Exercises 49–52, determine two coterminal angles (one positive and one negative) for each angle. Give your answers in degrees.

52. (a) $\theta = -390^{\circ}$ (b) $\theta = 230^{\circ}$

In Exercises 53–56, find (if possible) the complement and supplement of each angle.

53.	(a)	18°	(b) 85°	54. (a) 46°	(b) 93°
55.	(a)	150°	(b) 79°	56. (a) 130°	(b) 170°

In Exercises 57–60, rewrite each angle in radian measure as a multiple of π . (Do not use a calculator.)

57.	(a) 30°	(b) 45°	58. (a)	315°	(b)	120°
59.	(a) -20°	(b) −60°	60. (a)	-270°	(b)	144°

In Exercises 61–64, rewrite each angle in degree measure. (Do not use a calculator.)

61.	(a) $\frac{3\pi}{2}$	(b) $\frac{7\pi}{6}$	62. (a) $-\frac{7\pi}{12}$	(b) $\frac{\pi}{9}$
63.	(a) $\frac{5\pi}{4}$	(b) $-\frac{7\pi}{3}$	64. (a) $\frac{11\pi}{6}$	(b) $\frac{34\pi}{15}$

In Exercises 65–72, convert the angle measure from degrees to radians. Round to three decimal places.

65.	45°	66.	87.4°
67.	-216.35°	68.	-48.27°
69.	532°	70.	345°
71.	-0.83°	72.	0.54°

In Exercises 73–80, convert the angle measure from radians to degrees. Round to three decimal places.

73.	$\pi/7$	74.	$5\pi/11$
75.	$15\pi/8$	76.	$13\pi/2$
77.	-4.2π	78.	4.8π
79.	-2	80.	-0.57

In Exercises 81–84, convert each angle measure to decimal degree form without using a calculator. Then check your answers using a calculator.

81.	(a)	54° 45′	(b) −128° 30′
82.	(a)	245° 10′	(b) 2° 12′
83.	(a)	85° 18′ 30″	(b) 330° 25″
84.	(a)	$-135^\circ 36''$	(b) $-408^{\circ} 16' 20''$

In Exercises 85–88, convert each angle measure to degrees, minutes, and seconds without using a calculator. Then check your answers using a calculator.

85. (a) 240.6°	(b) −145.8°
86. (a) −345.12°	(b) 0.45°
87. (a) 2.5°	(b) −3.58°
88. (a) −0.36°	(b) 0.79°