4.1 EXERCISES

VOCABULARY: Fill in the blanks.

1. \qquad means "measurement of triangles."
2. An \qquad is determined by rotating a ray about its endpoint.
3. Two angles that have the same initial and terminal sides are \qquad .
4. One \qquad is the measure of a central angle that intercepts an arc equal to the radius of the circle.
5. Angles that measure between 0 and $\pi / 2$ are \qquad angles, and angles that measure between $\pi / 2$ and π are \qquad angles.
6. Two positive angles that have a sum of $\pi / 2$ are \qquad angles, whereas two positive angles that have a sum of π are \qquad angles.
7. The angle measure that is equivalent to a rotation of $\frac{1}{360}$ of a complete revolution about an angle's vertex is one \qquad -.
8. 180 degrees $=$ \qquad radians.
9. The \qquad speed of a particle is the ratio of arc length to time traveled, and the \qquad speed of a particle is the ratio of central angle to time traveled.
10. The area A of a sector of a circle with radius r and central angle θ, where θ is measured in radians, is given by the formula \qquad -.

SKILLS AND APPLICATIONS

In Exercises 11-16, estimate the angle to the nearest one-half radian.
11.

12.

14.

15.

16.

In Exercises 17-22, determine the quadrant in which each angle lies. (The angle measure is given in radians.)
17. (a) $\frac{\pi}{4}$
(b) $\frac{5 \pi}{4}$
18. (a) $\frac{11 \pi}{8}$
(b) $\frac{9 \pi}{8}$
19. (a) $-\frac{\pi}{6}$
(b) $-\frac{\pi}{3}$
20. (a) $-\frac{5 \pi}{6}$
(b) $-\frac{11 \pi}{9}$
21. (a) 3.5
(b) 2.25
22. (a) 6.02
(b) -4.25

In Exercises 23-26, sketch each angle in standard position.
23. (a) $\frac{\pi}{3}$
(b) $-\frac{2 \pi}{3}$
24. (a) $-\frac{7 \pi}{4}$
(b) $\frac{5 \pi}{2}$
25. (a) $\frac{11 \pi}{6}$
(b) -3
26. (a) 4
(b) 7π

In Exercises 27-30, determine two coterminal angles (one positive and one negative) for each angle. Give your answers in radians.
27. (a)

(b)

28. (a)

(b)

29. (a) $\theta=\frac{2 \pi}{3}$
(b) $\theta=\frac{\pi}{12}$
30. (a) $\theta=-\frac{9 \pi}{4}$
(b) $\theta=-\frac{2 \pi}{15}$

In Exercises 31-34, find (if possible) the complement and supplement of each angle.
31. (a) $\pi / 3$
(b) $\pi / 4$
32. (a) $\pi / 12$
(b) $11 \pi / 12$
33. (a) 1
(b) 2
34. (a) 3
(b) 1.5

In Exercises 35-40, estimate the number of degrees in the angle. Use a protractor to check your answer.
35.

36.

37.

38.

39.

40.

In Exercises 41-44, determine the quadrant in which each angle lies.
41. (a) 130°
(b) 285°
42. (a) 8.3°
(b) $257^{\circ} 30^{\prime}$
43. (a) $-132^{\circ} 50^{\prime}$
(b) -336°
44. (a) -260°
(b) -3.4°

In Exercises 45-48, sketch each angle in standard position.
45. (a) 90°
(b) 180°
46. (a) 270°
(b) 120°
47. (a) -30°
(b) -135°
48. (a) -750°
(b) -600°

In Exercises 49-52, determine two coterminal angles (one positive and one negative) for each angle. Give your answers in degrees.
49. (a)

(b)

50. (a)

(b)

51. (a) $\theta=240^{\circ}$
(b) $\theta=-180^{\circ}$
52. (a) $\theta=-390^{\circ}$
(b) $\theta=230^{\circ}$

In Exercises 53-56, find (if possible) the complement and supplement of each angle.
53. (a) 18°
(b) 85°
54. (a) 46°
(b) 93°
55. (a) 150°
(b) 79°
56. (a) 130°
(b) 170°

In Exercises 57-60, rewrite each angle in radian measure as a multiple of π. (Do not use a calculator.)
57. (a) 30°
(b) 45°
58. (a) 315°
(b) 120°
59. (a) -20°
(b) -60°
60. (a) -270°
(b) 144°

In Exercises 61-64, rewrite each angle in degree measure. (Do not use a calculator.)
61. (a) $\frac{3 \pi}{2}$
(b) $\frac{7 \pi}{6}$
62. (a) $-\frac{7 \pi}{12}$
(b) $\frac{\pi}{9}$
63. (a) $\frac{5 \pi}{4}$
(b) $-\frac{7 \pi}{3}$
64. (a) $\frac{11 \pi}{6}$
(b) $\frac{34 \pi}{15}$

In Exercises 65-72, convert the angle measure from degrees to radians. Round to three decimal places.
65. 45°
66. 87.4°
67. -216.35°
68. -48.27°
69. 532°
70. 345°
71. -0.83°
72. 0.54°

In Exercises 73-80, convert the angle measure from radians to degrees. Round to three decimal places.
73. $\pi / 7$
74. $5 \pi / 11$
75. $15 \pi / 8$
76. $13 \pi / 2$
77. -4.2π
78. 4.8π
79. -2
80. -0.57

In Exercises 81-84, convert each angle measure to decimal degree form without using a calculator. Then check your answers using a calculator.
81. (a) $54^{\circ} 45^{\prime}$
(b) $-128^{\circ} 30^{\prime}$
82. (a) $245^{\circ} 10^{\prime}$
(b) $2^{\circ} 12^{\prime}$
83. (a) $85^{\circ} 18^{\prime} 30^{\prime \prime}$
(b) $330^{\circ} 25^{\prime \prime}$
84. (a) $-135^{\circ} 36^{\prime \prime}$
(b) $-408^{\circ} 16^{\prime} 20^{\prime \prime}$

In Exercises 85-88, convert each angle measure to degrees, minutes, and seconds without using a calculator. Then check your answers using a calculator.
85. (a) 240.6°
(b) -145.8°
86. (a) -345.12°
(b) 0.45°
87. (a) 2.5°
(b) -3.58°
88. (a) -0.36°
(b) 0.79°

