

RADIAN AND DEGREE MEASURE

Copyright © Cengage Learning. All rights reserved.

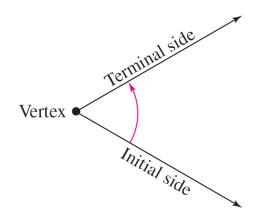
What You Should Learn

- Describe angles.
- Use radian measure.
- Use degree measure.
- Use angles to model and solve real-life problems.

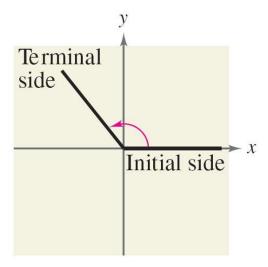
Angles

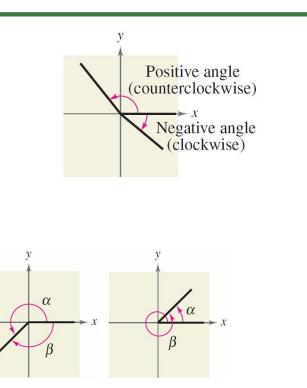
Trigonometry means "measurement of triangles."

An **angle** is determined by rotating a ray (half-line) about its endpoint.



standard position





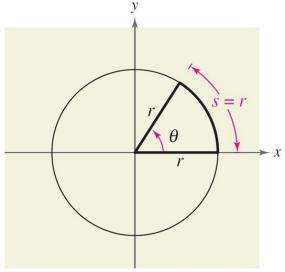
Same initial and terminal sides. Such angles are **coterminal.**

The **measure of an angle** is determined by the amount of rotation from the initial side to the terminal side.

One way to measure angles is in *radians*.

To define a radian, you can use a **central angle** of a circle, one whose vertex is the center of the circle.

Arc length = radius when θ = 1 radian

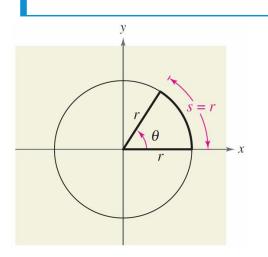


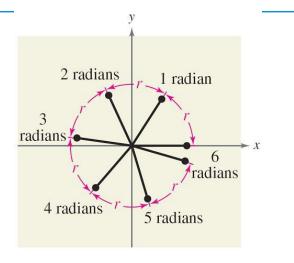
Definition of Radian

One **radian** is the measure of a central angle θ that intercepts an arc *s* equal in length to the radius *r* of the circle. See Figure 4.5. Algebraically, this means that

$$\theta = \frac{s}{r}$$

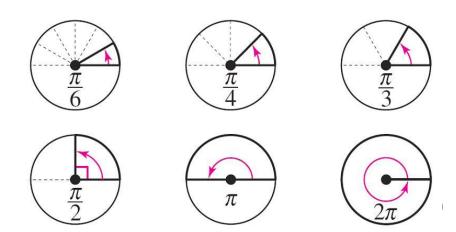
where θ is measured in radians.





8

$$\frac{1}{2} \text{ revolution} = \frac{2\pi}{2} = \pi \text{ radians}$$
$$\frac{1}{4} \text{ revolution} = \frac{2\pi}{4} = \frac{\pi}{2} \text{ radians}$$
$$\frac{1}{6} \text{ revolution} = \frac{2\pi}{6} = \frac{\pi}{3} \text{ radians}$$



$$\theta = \frac{\pi}{2}$$
Quadrant II
$$\frac{\pi}{2} < \theta < \pi$$
Quadrant II
$$0 < \theta < \frac{\pi}{2}$$

$$\theta = \pi$$
Quadrant III
Quadrant IV
$$\pi < \theta < \frac{3\pi}{2}$$
Quadrant IV
$$\frac{3\pi}{2} < \theta < 2\pi$$

$$\theta = \frac{3\pi}{2}$$

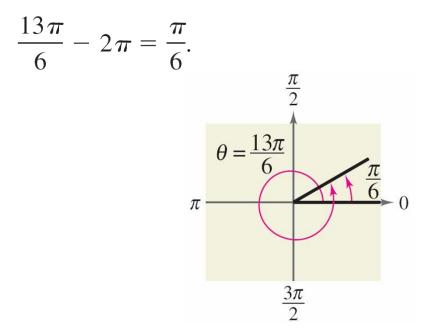
10

A given angle θ has infinitely many coterminal angles. For instance, $\theta = \pi/6$ is coterminal with

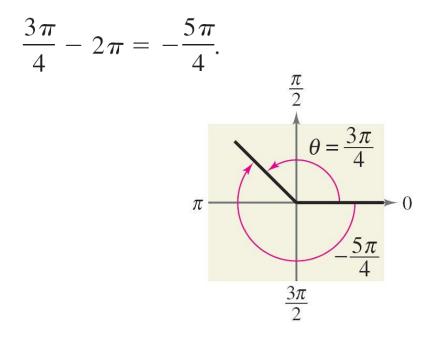
$$\frac{\pi}{6} + 2n\pi$$

where *n* is an integer.

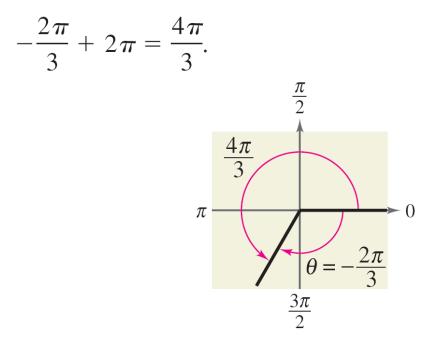
a. For the positive angle $13\pi/6$, subtract 2π to obtain a coterminal angle



b. For the positive angle $3\pi/4$, subtract 2π to obtain a coterminal angle

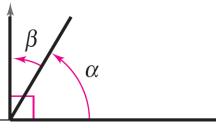


c. For the negative angle $-2\pi/3$, add 2π to obtain a coterminal angle



Two positive angles α and β are **complementary** (complements of each other) if their sum is $\pi/2$.

Two positive angles are **supplementary** (supplements of each other) if their sum is π .



Complementary angles

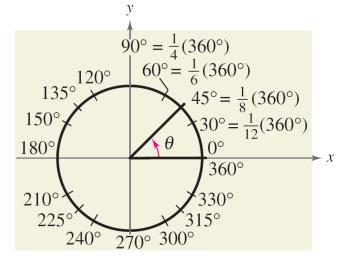
β α

Supplementary angles

16

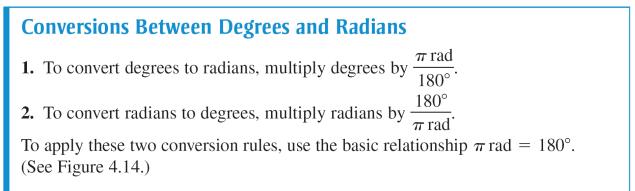
A second way to measure angles is in terms of **degrees**, denoted by the symbol °.

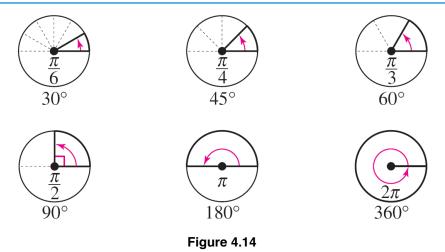
A measure of one degree (1°) is equivalent to a rotation of $\frac{1}{360}$ of a complete revolution about the vertex.



$$1^\circ = \frac{\pi}{180}$$
 rad $1 \text{ rad } = \left(\frac{180^\circ}{\pi}\right)$

When no units of angle measure are specified, *radian measure is implied*.





Example 3 – *Converting from Degrees to Radians*

a.
$$135^\circ = (135 \text{ deg}) \left(\frac{\pi \text{ rad}}{180 \text{ deg}}\right)$$

 $= \frac{3\pi}{4} \text{ radians}$
b. $540^\circ = (540 \text{ deg}) \left(\frac{\pi \text{ rad}}{180 \text{ deg}}\right)$
 $= 3\pi \text{ radians}$
c. $-270^\circ = (-270 \text{ deg}) \left(\frac{\pi \text{ rad}}{180 \text{ deg}}\right)$

 $=-\frac{3\pi}{2}$ radians

Multiply by π /180.

Multiply by $\pi/180$.

Multiply by $\pi/180$.

20

Applications

Applications

Arc Length

For a circle of radius r, a central angle θ intercepts an arc of length s given by

 $s = r\theta$ Length of circular arc

where θ is measured in radians. Note that if r = 1, then $s = \theta$, and the radian measure of θ equals the arc length.

Example 5 – *Finding Arc Length*

A circle has a radius of 4 inches. Find the length of the arc intercepted by a central angle of 240°, as shown in Figure 4.15.

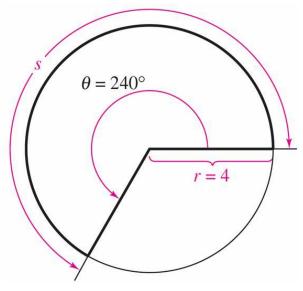


Figure 4.15

Example 5 – *Solution*

Convert 240° to radian measure:

$$240^{\circ} = (240 \text{ deg}) \left(\frac{\pi \text{ rad}}{180 \text{ deg}} \right)$$
$$= \frac{4\pi}{3} \text{ radians}$$

Find the arc length to be

$$s = r\theta$$
$$= 4\left(\frac{4\pi}{3}\right)$$
$$= \frac{16\pi}{3} \approx 16.76 \text{ inches.}$$

24

Applications

Linear and Angular Speeds

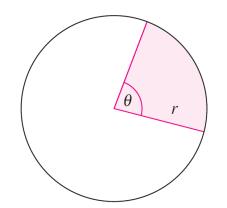
Consider a particle moving at a constant speed along a circular arc of radius r. If s is the length of the arc traveled in time t, then the **linear speed** v of the particle is

Linear speed $v = \frac{\text{arc length}}{\text{time}} = \frac{s}{t}$.

Moreover, if θ is the angle (in radian measure) corresponding to the arc length *s*, then the **angular speed** ω (the lowercase Greek letter omega) of the particle is

Angular speed $\omega = \frac{\text{central angle}}{\text{time}} = \frac{\theta}{t}$.

Applications



A **sector** of a circle is the region bounded by two radii of the circle and their intercepted arc

Area of a Sector of a Circle

For a circle of radius r, the area A of a sector of the circle with central angle θ is given by

$$A = \frac{1}{2}r^2\theta$$

where θ is measured in radians.