- Describe angles.
- Use radian measure.
- Use degree measure.
- Use angles to model and solve real-life problems.

Angles

Trigonometry means "measurement of triangles."

An angle is determined by rotating a ray (half-line) about its endpoint.

Angles

standard position

Same initial and terminal sides. Such angles are coterminal.

Radian Measure

Radian Measure

The measure of an angle is determined by the amount of rotation from the initial side to the terminal side.
One way to measure angles is in radians.
To define a radian, you can use a central angle of a circle, one whose vertex is the center of the circle.

Arc length $=$ radius when $\theta=1$ radian

Radian Measure

Definition of Radian

One radian is the measure of a central angle θ that intercepts an arc s equal in length to the radius r of the circle. See Figure 4.5. Algebraically, this means that

$$
\theta=\frac{s}{r}
$$

where θ is measured in radians.

$\frac{1}{2}$ revolution $=\frac{2 \pi}{2}=\pi$ radians
$\frac{1}{4}$ revolution $=\frac{2 \pi}{4}=\frac{\pi}{2}$ radians
$\frac{1}{6}$ revolution $=\frac{2 \pi}{6}=\frac{\pi}{3}$ radians

A given angle θ has infinitely many coterminal angles. For instance, $\theta=\pi / 6$ is coterminal with

$$
\frac{\pi}{6}+2 n \pi
$$

where n is an integer.
a. For the positive angle $13 \pi / 6$, subtract 2π to obtain a coterminal angle

$$
\frac{13 \pi}{6}-2 \pi=\frac{\pi}{6}
$$

b. For the positive angle $3 \pi / 4$, subtract 2π to obtain a coterminal angle

$$
\frac{3 \pi}{4}-2 \pi=-\frac{5 \pi}{4}
$$

c. For the negative angle $-2 \pi / 3$, add 2π to obtain a coterminal angle

$$
-\frac{2 \pi}{3}+2 \pi=\frac{4 \pi}{3}
$$

Radian Measure

Two positive angles α and β are complementary (complements of each other) if their sum is $\pi / 2$.

Two positive angles are supplementary (supplements of each other) if their sum is π.

Degree Measure

Degree Measure

A second way to measure angles is in terms of degrees, denoted by the symbol ${ }^{\circ}$.

A measure of one degree $\left(1^{\circ}\right)$ is equivalent to a rotation of $\frac{1}{360}$ of a complete revolution about the vertex.

Degree Measure

$$
1^{\circ}=\frac{\pi}{180} \mathrm{rad}
$$

$1 \mathrm{rad}=\left(\frac{180^{\circ}}{\pi}\right)$

When no units of angle measure are specified, radian measure is implied.

Degree Measure

Conversions Between Degrrees and Radians

1. To convert degrees to radians, multiply degrees by $\frac{\pi \mathrm{rad}}{180^{\circ}}$.
2. To convert radians to degrees, multiply radians by $\frac{180^{\circ}}{\pi \mathrm{rad}}$.

To apply these two conversion rules, use the basic relationship $\pi \mathrm{rad}=180^{\circ}$. (See Figure 4.14.)

Figure 4.14

:. Fxample 3 - Converting from Degrees to Radians

a. $135^{\circ}=(135 \mathrm{deg})\left(\frac{\pi \mathrm{rad}}{180 \mathrm{deg}}\right)$

Multiply by $\pi / 180$.
$=\frac{3 \pi}{4}$ radians
b. $540^{\circ}=(540 \mathrm{deg})\left(\frac{\pi \mathrm{rad}}{180 \mathrm{deg}}\right)$

Multiply by $\pi / 180$.
$=3 \pi$ radians
C. $-270^{\circ}=(-270 \mathrm{deg})\left(\frac{\pi \mathrm{rad}}{180 \mathrm{deg}}\right)$

Multiply by $\pi / 180$.
$=-\frac{3 \pi}{2}$ radians

Applications

Arc Length

For a circle of radius r, a central angle θ intercepts an arc of length s given by

$$
s=r \theta \quad \text { Length of circular arc }
$$

where θ is measured in radians. Note that if $r=1$, then $s=\theta$, and the radian measure of θ equals the arc length.

IFxample 5 - Finding Arc Length

A circle has a radius of 4 inches. Find the length of the arc intercepted by a central angle of 240°, as shown in
Figure 4.15.

Figure 4.15

Example 5 - Solution

Convert 240° to radian measure:

$$
\begin{aligned}
240^{\circ} & =(240 \mathrm{deg})\left(\frac{\pi \mathrm{rad}}{180 \mathrm{deg}}\right) \\
& =\frac{4 \pi}{3} \text { radians }
\end{aligned}
$$

Find the arc length to be

$$
\begin{aligned}
s & =r \theta \\
& =4\left(\frac{4 \pi}{3}\right) \\
& =\frac{16 \pi}{3} \approx 16.76 \text { inches. }
\end{aligned}
$$

Applications

Linear and Angular Speeds

Consider a particle moving at a constant speed along a circular arc of radius r. If s is the length of the arc traveled in time t, then the linear speed v of the particle is

Linear speed $v=\frac{\text { arc length }}{\text { time }}=\frac{s}{t}$.
Moreover, if θ is the angle (in radian measure) corresponding to the arc length s, then the angular speed ω (the lowercase Greek letter omega) of the particle is

Angular speed $\omega=\frac{\text { central angle }}{\text { time }}=\frac{\theta}{t}$.

Applications

A sector of a circle is the region bounded by two radii of the circle and their intercepted arc

Area of a Sector of a Circle

For a circle of radius r, the area A of a sector of the circle with central angle θ is given by

$$
A=\frac{1}{2} r^{2} \theta
$$

where θ is measured in radians.

