Using Sum and Difference Formulas

Using Sum and Difference Formulas

Sum and Difference Formulas

$\sin (u+v)=\sin u \cos v+\cos u \sin v$
$\sin (u-v)=\sin u \cos v-\cos u \sin v$
$\cos (u+v)=\cos u \cos v-\sin u \sin v$
$\cos (u-v)=\cos u \cos v+\sin u \sin v$
$\tan (u+v)=\frac{\tan u+\tan v}{1-\tan u \tan v} \quad \tan (u-v)=\frac{\tan u-\tan v}{1+\tan u \tan v}$

: Example 1 - Evaluating a Trigonometric Function

Find the exact value of $\sin \frac{\pi}{12}$.
Solution:
To find the exact value of $\sin \frac{\pi}{12}$, use the fact that

$$
\frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4} .
$$

Consequently, the formula for $\sin (u-v)$ yields

$$
\sin \frac{\pi}{12}=\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)
$$

IFxample 1 - Solution

$$
\begin{aligned}
& =\sin \frac{\pi}{3} \cos \frac{\pi}{4}-\cos \frac{\pi}{3} \sin \frac{\pi}{4} \\
& =\frac{\sqrt{3}}{2}\left(\frac{\sqrt{2}}{2}\right)-\frac{1}{2}\left(\frac{\sqrt{2}}{2}\right) \\
& =\frac{\sqrt{6}-\sqrt{2}}{4}
\end{aligned}
$$

Try checking this result on your calculator. You will find that $\sin \frac{\pi}{12} \approx 0.259$.

Using Sum and Difference Formulas

$=\sin x$.

$$
\cos \left(\frac{\pi}{2}-x\right)
$$

Fxample 5 - Proving a Cofunction identity

Prove the cofunction identity $\cos \left(\frac{\pi}{2}-x\right)=\sin x$.

Solution:
Using the formula for $\cos (u-v)$, you have

$$
\begin{aligned}
\cos \left(\frac{\pi}{2}-x\right) & =\cos \frac{\pi}{2} \cos x+\sin \frac{\pi}{2} \sin x \\
& =(0)(\cos x)+(1)(\sin x) \\
& =\sin x
\end{aligned}
$$

IUsing Sum and Difference Formulas

Sum and difference formulas can be used to rewrite expressions such as
$\sin \left(\theta+\frac{n \pi}{2}\right)$ and $\cos \left(\theta+\frac{n \pi}{2}\right), \quad$ where n is an integer
as expressions involving only $\sin \theta$ or $\cos \theta$.

The resulting formulas are called reduction formulas.

: Fxample 7 - Solving a Trigonometric Equation

Find all solutions of $\sin \left(x+\frac{\pi}{4}\right)+\sin \left(x-\frac{\pi}{4}\right)=-1$ in the interval $[0,2 \pi)$.

Solution:
Using sum and difference formulas, rewrite the equation as

$$
\begin{array}{r}
\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}+\sin x \cos \frac{\pi}{4}-\cos x \sin \frac{\pi}{4}=-1 \\
2 \sin x \cos \frac{\pi}{4}=-1
\end{array}
$$

$$
\begin{aligned}
2(\sin x)\left(\frac{\sqrt{2}}{2}\right) & =\frac{1}{2} \\
\sin x & =-\frac{1}{\sqrt{2}} \\
\sin x & =-\frac{\sqrt{2}}{2} .
\end{aligned}
$$

So, the only solutions in the interval $[0,2 \pi)$ are
$x=\frac{5 \pi}{4} \quad$ and $x=\frac{7 \pi}{4}$.

Find all solutions of the equations in the interval $[0,2 \pi)$

1. $\cos \left(x-\frac{\pi}{2}\right)+\sin ^{2} x=0$
2. $\tan (x+\pi)+2 \sin (x+\pi)=0$

Write the trigonometric expression as an algebraic expression:
$\sin (\arctan 2 x-\arccos x)$

