5.3 EXERCISES

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

VOCABULARY: Fill in the blanks.

- 1. When solving a trigonometric equation, the preliminary goal is to ______ the trigonometric function involved in the equation.
- 2. The equation $2 \sin \theta + 1 = 0$ has the solutions $\theta = \frac{7\pi}{6} + 2n\pi$ and $\theta = \frac{11\pi}{6} + 2n\pi$, which are called ______ solutions.
- 3. The equation $2 \tan^2 x 3 \tan x + 1 = 0$ is a trigonometric equation that is of _____ type.
- **4.** A solution of an equation that does not satisfy the original equation is called an ______ solution.

SKILLS AND APPLICATIONS

In Exercises 5–10, verify that the *x*-values are solutions of the equation.

5.
$$2 \cos x - 1 = 0$$

(a) $x = \frac{\pi}{3}$ (b) $x = \frac{5\pi}{3}$
6. $\sec x - 2 = 0$
(a) $x = \frac{\pi}{3}$ (b) $x = \frac{5\pi}{3}$
7. $3 \tan^2 2x - 1 = 0$
(a) $x = \frac{\pi}{12}$ (b) $x = \frac{5\pi}{12}$
8. $2 \cos^2 4x - 1 = 0$
(a) $x = \frac{\pi}{16}$ (b) $x = \frac{3\pi}{16}$
9. $2 \sin^2 x - \sin x - 1 = 0$
(a) $x = \frac{\pi}{2}$ (b) $x = \frac{7\pi}{6}$
10. $\csc^4 x - 4 \csc^2 x = 0$
(a) $x = \frac{\pi}{6}$ (b) $x = \frac{5\pi}{6}$
In Exercises 11–24, solve the equation.

11. $2 \cos x + 1 = 0$ **12.** $2 \sin x + 1 = 0$ **13.** $\sqrt{3} \csc x - 2 = 0$ **14.** $\tan x + \sqrt{3} = 0$ **15.** $3 \sec^2 x - 4 = 0$ **16.** $3 \cot^2 x - 1 = 0$ **17.** $\sin x(\sin x + 1) = 0$ **18.** $(3 \tan^2 x - 1)(\tan^2 x - 3) = 0$ **19.** $4 \cos^2 x - 1 = 0$ **20.** $\sin^2 x = 3 \cos^2 x$ **21.** $2 \sin^2 2x = 1$ **22.** $\tan^2 3x = 3$ **23.** $\tan 3x(\tan x - 1) = 0$ **24.** $\cos 2x(2\cos x + 1) = 0$

In Exercises 25–38, find all solutions of the equation in the interval $[0, 2\pi)$.

25. $\cos^3 x = \cos x$ **26.** $\sec^2 x - 1 = 0$

27.
$$3 \tan^3 x = \tan x$$
 28. $2 \sin^2 x = 2 + \cos x$

 29. $\sec^2 x - \sec x = 2$
 30. $\sec x \csc x = 2 \csc x$

 31. $2 \sin x + \csc x = 0$
 32. $\sec x + \tan x = 1$

 33. $2 \cos^2 x + \cos x - 1 = 0$

 34. $2 \sin^2 x + 3 \sin x + 1 = 0$

 35. $2 \sec^2 x + \tan^2 x - 3 = 0$

 36. $\cos x + \sin x \tan x = 2$

 37. $\csc x + \cot x = 1$

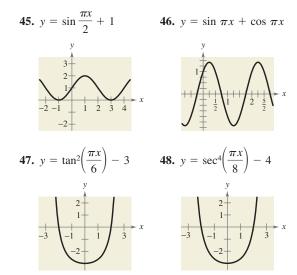
 38. $\sin x - 2 = \cos x - 2$

In Exercises 39–44, solve the multiple-angle equation.

39.
$$\cos 2x = \frac{1}{2}$$

40. $\sin 2x = -\frac{\sqrt{3}}{2}$
41. $\tan 3x = 1$
42. $\sec 4x = 2$
43. $\cos \frac{x}{2} = \frac{\sqrt{2}}{2}$
44. $\sin \frac{x}{2} = -\frac{\sqrt{3}}{2}$

In Exercises 45–48, find the *x*-intercepts of the graph.



solutions (to three decimal places) of the equation in the interval $[0, 2\pi)$.

49.
$$2 \sin x + \cos x = 0$$

50. $4 \sin^3 x + 2 \sin^2 x - 2 \sin x - 1 = 0$
51. $\frac{1 + \sin x}{\cos x} + \frac{\cos x}{1 + \sin x} = 4$
52. $\frac{\cos x \cot x}{1 - \sin x} = 3$
53. $x \tan x - 1 = 0$
54. $x \cos x - 1 = 0$
55. $\sec^2 x + 0.5 \tan x - 1 = 0$
56. $\csc^2 x + 0.5 \cot x - 5 = 0$
57. $2 \tan^2 x + 7 \tan x - 15 = 0$
58. $6 \sin^2 x - 7 \sin x + 2 = 0$

- 🔁 In Exercises 59–62, use the Quadratic Formula to solve the equation in the interval $[0, 2\pi)$. Then use a graphing utility to approximate the angle x.
 - **59.** $12\sin^2 x 13\sin x + 3 = 0$ **60.** $3 \tan^2 x + 4 \tan x - 4 = 0$ **61.** $\tan^2 x + 3 \tan x + 1 = 0$ **62.** $4\cos^2 x - 4\cos x - 1 = 0$

In Exercises 63-74, use inverse functions where needed to find all solutions of the equation in the interval $[0, 2\pi)$.

63. $\tan^2 x + \tan x - 12 = 0$ **64.** $\tan^2 x - \tan x - 2 = 0$ **65.** $\tan^2 x - 6 \tan x + 5 = 0$ **66.** $\sec^2 x + \tan x - 3 = 0$ **67.** $2\cos^2 x - 5\cos x + 2 = 0$ **68.** $2\sin^2 x - 7\sin x + 3 = 0$ **69.** $\cot^2 x - 9 = 0$ **70.** $\cot^2 x - 6 \cot x + 5 = 0$ **71.** $\sec^2 x - 4 \sec x = 0$ 72. $\sec^2 x + 2 \sec x - 8 = 0$ **73.** $\csc^2 x + 3 \csc x - 4 = 0$ 74. $\csc^2 x - 5 \csc x = 0$

 \bigcirc In Exercises 75–78, use a graphing utility to approximate the solutions (to three decimal places) of the equation in the given interval.

75. $3 \tan^2 x + 5 \tan x - 4 = 0$, $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ **76.** $\cos^2 x - 2\cos x - 1 = 0$, $[0, \pi]$ **77.** $4\cos^2 x - 2\sin x + 1 = 0$, $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$ **78.** $2 \sec^2 x + \tan x - 6 = 0, \quad \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

 $rac{1}{2}$ In Exercises 49–58, use a graphing utility to approximate the $rac{1}{2}$ In Exercises 79–84, (a) use a graphing utility to graph the function and approximate the maximum and minimum ĥ points on the graph in the interval $[0, 2\pi)$, and (b) solve the trigonometric equation and demonstrate that its solutions are the x-coordinates of the maximum and minimum points of f. (Calculus is required to find the trigonometric equation.)

Function	Trigonometric Equation
79. $f(x) = \sin^2 x + \cos x$	$2\sin x\cos x - \sin x = 0$
80. $f(x) = \cos^2 x - \sin x$	$-2\sin x\cos x - \cos x = 0$
81. $f(x) = \sin x + \cos x$	$\cos x - \sin x = 0$
82. $f(x) = 2 \sin x + \cos 2x$	$2\cos x - 4\sin x\cos x = 0$
83. $f(x) = \sin x \cos x$	$-\sin^2 x + \cos^2 x = 0$
84. $f(x) = \sec x + \tan x - x$	x
	$\sec x \tan x + \sec^2 x - 1 = 0$

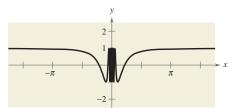
FIXED POINT In Exercises 85 and 86, find the smallest positive fixed point of the function f. [A fixed point of a function *f* is a real number *c* such that f(c) = c.]

85.
$$f(x) = \tan \frac{\pi x}{4}$$
 86. $f(x) = \cos x$

87. GRAPHICAL REASONING Consider the function given by

$$f(x) = \cos\frac{1}{x}$$

and its graph shown in the figure.

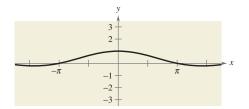


- (a) What is the domain of the function?
- (b) Identify any symmetry and any asymptotes of the graph.
- (c) Describe the behavior of the function as $x \rightarrow 0$.
- (d) How many solutions does the equation
 - $\cos\frac{1}{x} = 0$

have in the interval [-1, 1]? Find the solutions.

(e) Does the equation $\cos(1/x) = 0$ have a greatest solution? If so, approximate the solution. If not, explain why.

88. GRAPHICAL REASONING Consider the function given by $f(x) = (\sin x)/x$ and its graph shown in the figure.

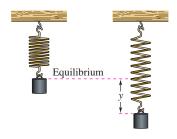


- (a) What is the domain of the function?
- (b) Identify any symmetry and any asymptotes of the graph.
- (c) Describe the behavior of the function as $x \rightarrow 0$.
- (d) How many solutions does the equation

$$\frac{\sin x}{x} = 0$$

have in the interval [-8, 8]? Find the solutions.

89. HARMONIC MOTION A weight is oscillating on the end of a spring (see figure). The position of the weight relative to the point of equilibrium is given by $y = \frac{1}{12}(\cos 8t - 3\sin 8t)$, where y is the displacement (in meters) and t is the time (in seconds). Find the times when the weight is at the point of equilibrium (y = 0) for $0 \le t \le 1$.



- **90. DAMPED HARMONIC MOTION** The displacement from equilibrium of a weight oscillating on the end of a spring is given by $y = 1.56e^{-0.22t}\cos 4.9t$, where y is the displacement (in feet) and t is the time (in seconds). Use a graphing utility to graph the displacement function for $0 \le t \le 10$. Find the time beyond which the displacement does not exceed 1 foot from equilibrium.
 - **91. SALES** The monthly sales *S* (in thousands of units) of a seasonal product are approximated by

$$S = 74.50 + 43.75 \sin \frac{\pi t}{6}$$

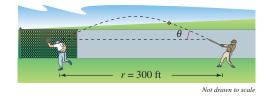
where *t* is the time (in months), with t = 1 corresponding to January. Determine the months in which sales exceed 100,000 units.

92. SALES The monthly sales *S* (in hundreds of units) of skiing equipment at a sports store are approximated by

$$S = 58.3 + 32.5 \cos \frac{\pi t}{6}$$

where *t* is the time (in months), with t = 1 corresponding to January. Determine the months in which sales exceed 7500 units.

93. PROJECTILE MOTION A batted baseball leaves the bat at an angle of θ with the horizontal and an initial velocity of $v_0 = 100$ feet per second. The ball is caught by an outfielder 300 feet from home plate (see figure). Find θ if the range *r* of a projectile is given by $r = \frac{1}{32}v_0^2 \sin 2\theta$.



94. **PROJECTILE MOTION** A sharpshooter intends to hit a target at a distance of 1000 yards with a gun that has a muzzle velocity of 1200 feet per second (see figure). Neglecting air resistance, determine the gun's minimum angle of elevation θ if the range *r* is given by

$$r = \frac{1}{32} v_0^2 \sin 2\theta.$$

Not drawn to scale

95. FERRIS WHEEL A Ferris wheel is built such that the height *h* (in feet) above ground of a seat on the wheel at time *t* (in minutes) can be modeled by

$$h(t) = 53 + 50 \sin\left(\frac{\pi}{16}t - \frac{\pi}{2}\right).$$

The wheel makes one revolution every 32 seconds. The ride begins when t = 0.

- (a) During the first 32 seconds of the ride, when will a person on the Ferris wheel be 53 feet above ground?
- (b) When will a person be at the top of the Ferris wheel for the first time during the ride? If the ride lasts 160 seconds, how many times will a person be at the top of the ride, and at what times?