5.3 EXERCISES

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

VOCABULARY: Fill in the blanks.

1. When solving a trigonometric equation, the preliminary goal is to \qquad the trigonometric function involved in the equation.
2. The equation $2 \sin \theta+1=0$ has the solutions $\theta=\frac{7 \pi}{6}+2 n \pi$ and $\theta=\frac{11 \pi}{6}+2 n \pi$, which are called \qquad solutions.
3. The equation $2 \tan ^{2} x-3 \tan x+1=0$ is a trigonometric equation that is of \qquad type.
4. A solution of an equation that does not satisfy the original equation is called an \qquad solution.

SKILLS AND APPLICATIONS

In Exercises 5-10, verify that the x-values are solutions of the equation.
5. $2 \cos x-1=0$
(a) $x=\frac{\pi}{3}$
(b) $x=\frac{5 \pi}{3}$
6. $\sec x-2=0$
(a) $x=\frac{\pi}{3}$
(b) $x=\frac{5 \pi}{3}$
7. $3 \tan ^{2} 2 x-1=0$
(a) $x=\frac{\pi}{12}$
(b) $x=\frac{5 \pi}{12}$
8. $2 \cos ^{2} 4 x-1=0$
(a) $x=\frac{\pi}{16}$
(b) $x=\frac{3 \pi}{16}$
9. $2 \sin ^{2} x-\sin x-1=0$
(a) $x=\frac{\pi}{2}$
(b) $x=\frac{7 \pi}{6}$
10. $\csc ^{4} x-4 \csc ^{2} x=0$
(a) $x=\frac{\pi}{6}$
(b) $x=\frac{5 \pi}{6}$

In Exercises 11-24, solve the equation.
11. $2 \cos x+1=0$
12. $2 \sin x+1=0$
13. $\sqrt{3} \csc x-2=0$
14. $\tan x+\sqrt{3}=0$
15. $3 \sec ^{2} x-4=0$
16. $3 \cot ^{2} x-1=0$
17. $\sin x(\sin x+1)=0$
18. $\left(3 \tan ^{2} x-1\right)\left(\tan ^{2} x-3\right)=0$
19. $4 \cos ^{2} x-1=0$
20. $\sin ^{2} x=3 \cos ^{2} x$
21. $2 \sin ^{2} 2 x=1$
22. $\tan ^{2} 3 x=3$
23. $\tan 3 x(\tan x-1)=0$
24. $\cos 2 x(2 \cos x+1)=0$

In Exercises 25-38, find all solutions of the equation in the interval $[0,2 \pi)$.
25. $\cos ^{3} x=\cos x$
26. $\sec ^{2} x-1=0$
27. $3 \tan ^{3} x=\tan x$
28. $2 \sin ^{2} x=2+\cos x$
29. $\sec ^{2} x-\sec x=2$
30. $\sec x \csc x=2 \csc x$
31. $2 \sin x+\csc x=0$
32. $\sec x+\tan x=1$
33. $2 \cos ^{2} x+\cos x-1=0$
34. $2 \sin ^{2} x+3 \sin x+1=0$
35. $2 \sec ^{2} x+\tan ^{2} x-3=0$
36. $\cos x+\sin x \tan x=2$
37. $\csc x+\cot x=1$
38. $\sin x-2=\cos x-2$

In Exercises 39-44, solve the multiple-angle equation.
39. $\cos 2 x=\frac{1}{2}$
40. $\sin 2 x=-\frac{\sqrt{3}}{2}$
41. $\tan 3 x=1$
42. $\sec 4 x=2$
43. $\cos \frac{x}{2}=\frac{\sqrt{2}}{2}$
44. $\sin \frac{x}{2}=-\frac{\sqrt{3}}{2}$

In Exercises 45-48, find the x-intercepts of the graph.
45. $y=\sin \frac{\pi x}{2}+1$
46. $y=\sin \pi x+\cos \pi x$

47. $y=\tan ^{2}\left(\frac{\pi x}{6}\right)-3$
48. $y=\sec ^{4}\left(\frac{\pi x}{8}\right)-4$

\triangle
In Exercises 49-58, use a graphing utility to approximate the solutions (to three decimal places) of the equation in the interval $[0,2 \pi)$.
49. $2 \sin x+\cos x=0$
50. $4 \sin ^{3} x+2 \sin ^{2} x-2 \sin x-1=0$
51. $\frac{1+\sin x}{\cos x}+\frac{\cos x}{1+\sin x}=4$
52. $\frac{\cos x \cot x}{1-\sin x}=3$
53. $x \tan x-1=0$
54. $x \cos x-1=0$
55. $\sec ^{2} x+0.5 \tan x-1=0$
56. $\csc ^{2} x+0.5 \cot x-5=0$
57. $2 \tan ^{2} x+7 \tan x-15=0$
58. $6 \sin ^{2} x-7 \sin x+2=0$

In Exercises 59-62, use the Quadratic Formula to solve the equation in the interval $[0,2 \pi)$. Then use a graphing utility to approximate the angle x.
59. $12 \sin ^{2} x-13 \sin x+3=0$
60. $3 \tan ^{2} x+4 \tan x-4=0$
61. $\tan ^{2} x+3 \tan x+1=0$
62. $4 \cos ^{2} x-4 \cos x-1=0$

In Exercises 63-74, use inverse functions where needed to find all solutions of the equation in the interval $[0,2 \pi)$.
63. $\tan ^{2} x+\tan x-12=0$
64. $\tan ^{2} x-\tan x-2=0$
65. $\tan ^{2} x-6 \tan x+5=0$
66. $\sec ^{2} x+\tan x-3=0$
67. $2 \cos ^{2} x-5 \cos x+2=0$
68. $2 \sin ^{2} x-7 \sin x+3=0$
69. $\cot ^{2} x-9=0$
70. $\cot ^{2} x-6 \cot x+5=0$
71. $\sec ^{2} x-4 \sec x=0$
72. $\sec ^{2} x+2 \sec x-8=0$
73. $\csc ^{2} x+3 \csc x-4=0$
74. $\csc ^{2} x-5 \csc x=0$

In Exercises 75-78, use a graphing utility to approximate the solutions (to three decimal places) of the equation in the given interval.
75. $3 \tan ^{2} x+5 \tan x-4=0, \quad\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
76. $\cos ^{2} x-2 \cos x-1=0, \quad[0, \pi]$
77. $4 \cos ^{2} x-2 \sin x+1=0, \quad\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
78. $2 \sec ^{2} x+\tan x-6=0, \quad\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

In Exercises 79-84, (a) use a graphing utility to graph the function and approximate the maximum and minimum points on the graph in the interval $[0,2 \pi$), and (b) solve the trigonometric equation and demonstrate that its solutions are the x-coordinates of the maximum and minimum points of f. (Calculus is required to find the trigonometric equation.)

Function

Trigonometric Equation
79. $f(x)=\sin ^{2} x+\cos x \quad 2 \sin x \cos x-\sin x=0$
80. $f(x)=\cos ^{2} x-\sin x \quad-2 \sin x \cos x-\cos x=0$
81. $f(x)=\sin x+\cos x \quad \cos x-\sin x=0$
82. $f(x)=2 \sin x+\cos 2 x \quad 2 \cos x-4 \sin x \cos x=0$
83. $f(x)=\sin x \cos x \quad-\sin ^{2} x+\cos ^{2} x=0$
84. $f(x)=\sec x+\tan x-x$

$$
\sec x \tan x+\sec ^{2} x-1=0
$$

FIXED POINT In Exercises 85 and 86, find the smallest positive fixed point of the function f. [A fixed point of a function f is a real number c such that $f(c)=c$.]
85. $f(x)=\tan \frac{\pi x}{4}$
86. $f(x)=\cos x$
87. GRAPHICAL REASONING Consider the function given by
$f(x)=\cos \frac{1}{x}$
and its graph shown in the figure.

(a) What is the domain of the function?
(b) Identify any symmetry and any asymptotes of the graph.
(c) Describe the behavior of the function as $x \rightarrow 0$.
(d) How many solutions does the equation
$\cos \frac{1}{x}=0$
have in the interval $[-1,1]$? Find the solutions.
(e) Does the equation $\cos (1 / x)=0$ have a greatest solution? If so, approximate the solution. If not, explain why.
88. GRAPHICAL REASONING Consider the function given by $f(x)=(\sin x) / x$ and its graph shown in the figure.

(a) What is the domain of the function?
(b) Identify any symmetry and any asymptotes of the graph.
(c) Describe the behavior of the function as $x \rightarrow 0$.
(d) How many solutions does the equation

$$
\frac{\sin x}{x}=0
$$

have in the interval $[-8,8]$? Find the solutions.
89. HARMONIC MOTION A weight is oscillating on the end of a spring (see figure). The position of the weight relative to the point of equilibrium is given by $y=\frac{1}{12}(\cos 8 t-3 \sin 8 t)$, where y is the displacement (in meters) and t is the time (in seconds). Find the times when the weight is at the point of equilibrium $(y=0)$ for $0 \leq t \leq 1$.

90. DAMPED HARMONIC MOTION The displacement from equilibrium of a weight oscillating on the end of a spring is given by $y=1.56 e^{-0.22 t} \cos 4.9 t$, where y is the displacement (in feet) and t is the time (in seconds). Use a graphing utility to graph the displacement function for $0 \leq t \leq 10$. Find the time beyond which the displacement does not exceed 1 foot from equilibrium.
91. SALES The monthly sales S (in thousands of units) of a seasonal product are approximated by
$S=74.50+43.75 \sin \frac{\pi t}{6}$
where t is the time (in months), with $t=1$ corresponding to January. Determine the months in which sales exceed 100,000 units.
92. SALES The monthly sales S (in hundreds of units) of skiing equipment at a sports store are approximated by
$S=58.3+32.5 \cos \frac{\pi t}{6}$
where t is the time (in months), with $t=1$ corresponding to January. Determine the months in which sales exceed 7500 units.
93. PROJECTILE MOTION A batted baseball leaves the bat at an angle of θ with the horizontal and an initial velocity of $v_{0}=100$ feet per second. The ball is caught by an outfielder 300 feet from home plate (see figure). Find θ if the range r of a projectile is given by $r=\frac{1}{32} v_{0}^{2} \sin 2 \theta$.

94. PROJECTILE MOTION A sharpshooter intends to hit a target at a distance of 1000 yards with a gun that has a muzzle velocity of 1200 feet per second (see figure). Neglecting air resistance, determine the gun's minimum angle of elevation θ if the range r is given by

$$
r=\frac{1}{32} v_{0}^{2} \sin 2 \theta .
$$

95. FERRIS WHEEL A Ferris wheel is built such that the height h (in feet) above ground of a seat on the wheel at time t (in minutes) can be modeled by
$h(t)=53+50 \sin \left(\frac{\pi}{16} t-\frac{\pi}{2}\right)$.
The wheel makes one revolution every 32 seconds. The ride begins when $t=0$.
(a) During the first 32 seconds of the ride, when will a person on the Ferris wheel be 53 feet above ground?
(b) When will a person be at the top of the Ferris wheel for the first time during the ride? If the ride lasts 160 seconds, how many times will a person be at the top of the ride, and at what times?

