SOLVING TRIGONOMETRIC EQUATIONS

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Use standard algebraic techniques to solve trigonometric equations.
- Solve trigonometric equations of quadratic type.
- Solve trigonometric equations involving multiple angles.
- Use inverse trigonometric functions to solve trigonometric equations.

Introduction

To solve a trigonometric equation, use standard algebraic techniques such as collecting like terms and factoring.

Your preliminary goal in solving a trigonometric equation is to isolate the trigonometric function in the equation.

For example, to solve the equation $2 \sin x=1$, divide each side by 2 to obtain

$$
\sin x=\frac{1}{2} .
$$

Introduction

To solve for x, note in Figure 5.6 that the equation $\sin x=\frac{1}{2}$ has solutions $x=\pi / 6$ and $x=5 \pi / 6$ in the interval $[0,2 \pi)$.

Figure 5.6

introduction

Moreover, because $\sin x$ has a period of 2π, there are infinitely many other solutions, which can be written as

$$
x=\frac{\pi}{6}+2 n \pi \quad \text { and } \quad x=\frac{5 \pi}{6}+2 n \pi \quad \text { General solution }
$$

where n is an integer, as shown in Figure 5.6.

Introduction

Another way to show that the equation $\sin x=\frac{1}{2}$ has infinitely many solutions is indicated in Figure 5.7.

Any angles that are coterminal with $\pi / 6$ or $5 \pi / 6$ will also be solutions of the equation.

When solving trigonometric equations, you should write your answer(s) using exact values rather than decimal approximations.

Figure 5.7

IFxample 1 - Collecting Like Terms

Solve $\sin x+\sqrt{2}=-\sin x$.

Solution:
Begin by rewriting the equation so that $\sin x$ is isolated on one side of the equation.

$$
\sin x+\sqrt{2}=-\sin x
$$

$\sin x+\sin x+\sqrt{2}=0$
$\sin x+\sin x=-\sqrt{2}$

Write original equation.

Add $\sin x$ to each side.

Subtract $\sqrt{2}$ from each side.

$$
\begin{aligned}
2 \sin x & =-\sqrt{2} & & \text { Combine like terms. } \\
\sin x & =-\frac{\sqrt{2}}{2} & & \text { Divide each side by } 2 .
\end{aligned}
$$

Because $\sin x$ has a period of 2π, first find all solutions in the interval $[0,2 \pi)$.

These solutions are $x=5 \pi / 4$ and $x=7 \pi / 4$. Finally, add multiples of 2π to each of these solutions to get the general form

$$
x=\frac{5 \pi}{4}+2 n \pi \text { and } x=\frac{7 \pi}{4}+2 n \pi \quad \text { General solution }
$$

where n is an integer.

Equations of Quadratic Type

Equations of Quadratic Type

Many trigonometric equations are of quadratic type $a x^{2}+b x+c=0$. Here are a couple of examples.

Quadratic in $\sin x$
$2 \sin ^{2} x-\sin x-1=0$
$2(\sin x)^{2}-\sin x-1=0$

To solve equations of this type, factor the quadratic or, if this is not possible, use the Quadratic Formula.

: Fxample 4 - Factoring an Equation of Quadratic Type

Find all solutions of $2 \sin ^{2} x-\sin x-1=0$ in the interval $[0,2 \pi$).

Solution:
Begin by treating the equation as a quadratic in $\sin x$ and factoring.

$$
2 \sin ^{2} x-\sin x-1=0
$$

$(2 \sin x+1)(\sin x-1)=0$

Write original equation.

Factor.

Example 4 - Solution

Setting each factor equal to zero, you obtain the following solutions in the interval $[0,2 \pi)$.
$2 \sin x+1=0 \quad$ and $\quad \sin x-1=0$

$$
\begin{aligned}
\sin x & =-\frac{1}{2} & \sin x & =1 \\
x & =\frac{7 \pi}{6}, \frac{11 \pi}{6} & x & =\frac{\pi}{2}
\end{aligned}
$$

Functions Involving Multiple Angles

IFunctions Involving Multiple Angles

The next example involves trigonometric functions of multiple angles of the forms sin $k u$ and $\cos k u$.

To solve equations of these forms, first solve the equation for $k u$, then divide your result by k.

Solve $2 \cos 3 t-1=0$.

Solution:

$2 \cos 3 t-1=0 \quad$ Write original equation.
$\begin{array}{ll}2 \cos 3 t=1 & \text { Add } 1 \text { to each side. } \\ \cos 3 t=\frac{1}{2} & \text { Divide each side by } 2 .\end{array}$

In the interval $[0,2 \pi)$, you know that $3 t=\pi / 3$ and $3 t=5 \pi / 3$ are the only solutions, so, in general, you have

$$
3 t=\frac{\pi}{3}+2 n \pi \quad \text { and } \quad 3 t=\frac{5 \pi}{3}+2 n \pi .
$$

Dividing these results by 3 , you obtain the general solution

$$
t=\frac{\pi}{9}+\frac{2 n \pi}{3} \quad \text { and } \quad t=\frac{5 \pi}{9}+\frac{2 n \pi}{3} \quad \text { General solution }
$$

where n is an integer.

Using Inverse Functions

Using Inverse Functions

In the next example, you will see how inverse trigonometric functions can be used to solve an equation.

II x xample 9 - Using Inverse Functions

Solve $\sec ^{2} x-2 \tan x=4$.

Solution:
$\sec ^{2} x-2 \tan x=4$
$1+\tan ^{2} x-2 \tan x-4=0$
$\tan ^{2} x-2 \tan x-3=0$
$(\tan x-3)(\tan x+1)=0$

Write original equation.

Pythagorean identity

Combine like terms.

Factor.

Setting each factor equal to zero, you obtain two solutions in the interval $(-\pi / 2, \pi / 2)$. [Recall that the range of the inverse tangent function is $(-\pi / 2, \pi / 2)$.]

$$
\begin{array}{rlrl}
\tan x-3 & =0 & \text { and } & \tan x+1=0 \\
\tan x & =3 & \tan x=-1 \\
x & =\arctan 3 & x & =-\frac{\pi}{4}
\end{array}
$$

Finally, because $\tan x$ has a period of π, you obtain the general solution by adding multiples of π

$$
x=\arctan 3+n \pi \quad \text { and } \quad x=-\frac{\pi}{4}+n \pi \quad \text { General solution }
$$

where n is an integer.

You can use a calculator to approximate the value of arctan 3.

