EXERCISES FOR SECTION 2.5

In Exercises 1–16, find dy/dx by implicit differentiation.

$$1. \cdot x^2 + y^2 = 36$$

$$2.2. x^2 - y^2 = 16$$

3.
$$x^{1/2} + y^{1/2} =$$

$$u4. x^3 + y^3 = 8$$

$$\sqrt{5} v^3 - vv + v^2 = v$$

$$\begin{array}{lll}
3. & x^{1/2} + y^{1/2} = 9 \\
4. & x^3 + y^3 = 8 \\
4. & x^2y + y^2x = -2 \\
4. & x^3 + y^3 = 8 \\
4. & x^2y + y^2x = -2 \\
4. & x^3 + y^3 = 8 \\
4. & x$$

$$\sqrt{7}. x^3y^3 - y = x$$

$$e 8. \sqrt{xy} = x - 2y$$

$$\sqrt{3}$$
, $x^2y^2 - y - x^2$
 $\sqrt{3}$, $x^3 - 3x^2y + 2xy^2 = 12$ $\sqrt{2}$ 10. $2 \sin x \cos y = 1$

$$_{12}$$
10. $2 \sin x \cos y = 1$

$$_{11}$$
11. $\sin x + 2\cos 2y = 1$

$$\frac{6}{6} \frac{y}{x^2} + \frac{5x}{3x} \frac{y}{y} + \frac{2xy}{2xy}$$
 12 $x^2 + \frac{1}{2} (\sin \pi x + \cos \pi y)^2 = 2$

$$13. \sin x = x(1 + \tan y)$$

$$y = x - y$$

$$_{K}15. y = \sin(xy)$$

$$/\sqrt{16}$$
. $x = \sec \frac{1}{y}$

In Exercises 17-20, (a) find two explicit functions by solving the equation for y in terms of x, (b) sketch the graph of the equation and label the parts given by the corresponding explicit functions, (c) differentiate the explicit functions, and (d) find dy/dx implicitly and show that the result is equivalent to that of part (c).

$$_{3}$$
17. $x^{2} + y^{2} = 16$

$$3 - 18. \ x^2 + y^2 - 4x + 6y + 9 = 0$$

$$\frac{19}{30}$$
 19. $9x^2 + 16y^2 = 14$

33. 19.
$$9x^2 + 16y^2 = 144$$
 20. $9y^2 - x^2 = 9$

In Exercises 21–28, find dy/dx by implicit differentiation and evaluate the derivative at the indicated point.

Equation

$$\frac{Point}{(-4,-1)}$$

19 21.
$$xy = 4$$

19 22. $x^2 - y^3 = 0$

$$y^2 = \frac{x^2 - 4}{x^2 + 4}$$

$$x^2 + 4$$

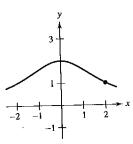
2024.
$$(x + y)^3 = x^3 + y^3$$

$$(-1, 1)$$

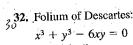
$$25. x^{2/3} + y^{2/3} = 5$$

$$26. x^3 + y^3 = 4xy + 1$$

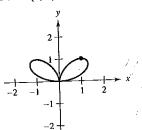
$$\frac{1}{23}$$
 27. $\tan(x + y) = x$

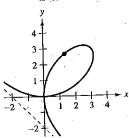

$$u_4$$
 28. $x \cos y = 1$

$$\left(2,\frac{\pi}{3}\right)$$


In Exercises 29-32, find the slope of the tangent line to the graph at the indicated point.

$$(x^2+4)y=8$$


$$(4-x)y^2=x^3$$



$$(x^2 + y^2)^2 = 4x^2y$$

Point:
$$\left(\frac{4}{3}, \frac{8}{3}\right)$$

In Exercises 33 and 34, find dy/dx implicitly and find the largest interval of the form -a < y < a such that y is a differentiable function of x. Then express dy/dx as a function of x.

33.
$$\tan y = x$$

34.
$$\cos y = x$$

In Exercises 35–40, find d^2y/dx^2 in terms of x and y.

35.
$$x^2 + y^2 = 36$$

$$36. x^2y^2 - 2x = 3$$

3737.
$$x^2 - y^2 = 16$$

$$3y$$
 38. $1 - xy = x - y$

39.
$$y^2 = x^3$$

$$y^2 = 4x$$

In Exercises 41 and 42, use a graphing utility to graph the equation. Find an equation of the tangent line to the graph at the indicated point and sketch its graph.

41.
$$\sqrt{x} + \sqrt{y} = 4$$
, (9,1)

$$_{21}42. \ y^2 = \frac{x-1}{x^2+1}, \ \left(2, \frac{\sqrt{5}}{5}\right)$$

In Exercises 43 and 44, find equations for the tangent line and normal line to the circle at the indicated points. (The normal line at a point is perpendicular to the tangent line at the point, Use a graphing utility to graph the equation, tangent line, and normal line.

$$u_1(43. \ x^2 + y^2 = 25)$$

$$444. x^2 + y^2 = 9$$
(0, 3), $(2, \sqrt{5})$

ent line to the
$$(4, 3), (-3, 4)$$

U. 145. Show that the normal line at any point on the circle $x^2 + y^2 = r^2$ passes through the origin.

44 46. Two circles of radius 4 are tangent to the graph of $y^2 = 4x^2$ the point (1, 2). Find equations of these two circles.

In Exercises 47 and 48, find the points at which the graph of the equation has a vertical or horizontal tangent line.

us 47.
$$25x^2 + 16y^2 + 200x - 160y + 400 = 0$$

$$47. 23x + 109$$

$$48. 4x^2 + y^2 - 8x + 4y + 4 = 0$$