1-24 ever In Exercises 5-10, find the slope of the tangent line to the graph of the function at the specified point.

5.
$$f(x) = 3 - 2x$$
, $(-1, 5)$

6.
$$g(x) = \frac{3}{2}x + 1$$
, $(-2, -2)$

6.
$$g(x) = \frac{2}{x^2} - 4$$
, $(1, -3)$

8.
$$g(x) = 5 - x^2$$
, (2, 1)

9.
$$f(t) = 3t - t^2$$
, (0,0)

10.
$$h(t) = t^2 + 3$$
, $(-2,7)$

In Exercises 11-24, find the derivative by the limit process.

11.
$$f(x) = 3$$

12.
$$g(x) = -5$$

13.
$$f(x) = -5x$$

14.
$$f(x) = 3x + 2$$

15.
$$f(s) = 3 + \frac{2}{3}s$$

16.
$$f(x) = 9 - \frac{1}{2}x$$

17.
$$f(x) = 2x^2 + x - 1$$

18.
$$f(x) = 1 - x^2$$

19.
$$f(x) = x^3 - 12x$$

20.
$$f(x) = x^3 + x^2$$

21.
$$f(x) = \frac{1}{x-1}$$

22.
$$f(x) = \frac{1}{x^2}$$

23.
$$f(x) = \sqrt{x+1}$$
 24. $f(x) = \frac{4}{\sqrt{x}}$

24.
$$f(x) = \frac{4}{\sqrt{x}}$$

In Exercises 25-32, (a) find an equation of the tangent line to the graph of f at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results.

25.
$$f(x) = x^2 + 1$$
, (2,5)

25.
$$f(x) = x^2 + 1$$
, (2.3)
26. $f(x) = x^2 + 2x + 1$, (-3.4)

27.
$$f(x) = x^3$$
, * (2, 8)

28.
$$f(x) = x^3 + 1$$
, (1, 2)

29.
$$f(x) = \sqrt{x}$$
, (1, 1)

30.
$$f(x) = \sqrt{x-1}$$
, (5, 2)

31.
$$f(x) = x + \frac{4}{x}$$
, (4, 5)

32.
$$f(x) = \frac{1}{x+1}$$
, (0, 1)

In Exercises 33-36, find an equation of the line that is tangent to the graph of f and parallel to the given line.

Function	Line
33. $f(x) = x^3$	3x - y + 1 = 0
34. $f(x) = x^3 + 2$	3x - y - 4 = 0
J-11 J (**)	6 = 0

35.
$$f(x) = \frac{1}{\sqrt{x}}$$
 $x + 2y - 6 = 0$

35.
$$f(x) = \frac{1}{\sqrt{x}}$$
 $x + 2y - 6 = 0$
36. $f(x) = \frac{1}{\sqrt{x-1}}$ $x + 2y + 7 = 0$

37. The tangent line to the graph of y = g(x) at the point (5, 2)passes through the point (9,0). Find g(5) and g'(5).

passes through the point
$$(9,0)$$
. Find $g(y)$ and $g(y)$ and $g(y)$ are $g(y)$ and $g(y)$ and $g(y)$ are $g(y)$ as $g(y)$.

38. The tangent line to the graph of $y = h(x)$ at the point $(-1, 4)$ passes through the point $(3, 6)$. Find $h(-1)$ and $h'(-1)$.

Getting at the Concept

In Exercises 39-42, the graph of f is given. Select the graph of f'.

40.

- 43. Sketch a graph of a function whose derivative is alway negative.
- 44. Sketch a graph of a function whose derivative is always positive.
- **45.** Assume that f'(c) = 3. Find f'(-c) if (a) f is an odd full tion and if (b) f is an even function.
- 46. Determine whether the limit yields the derivative of differentiable function f. Explain.

(a)
$$\lim_{\Delta x \to 0} \frac{f(x + 2\Delta x) - f(x)}{2\Delta x}$$

(b)
$$\lim_{\Delta x \to 0} \frac{f(x+2) - f(x)}{\Delta x}$$

(c)
$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$

(c)
$$\lim_{\Delta x \to 0} \frac{2\Delta x}{2\Delta x}$$

(d) $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$