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The bisection method for approximating the real zeros of a continuous function
is similar to the method used in Example 8. If you know that a zero exists in the closed
interval [a, b], the zero must lie i the interval [a, (@ + b)/2] or [(a + b)/2, b]. From
the sign of flla + b}/2}, you can determine which interval contains the zero. By

h repeatediy biseciing the interval, you can “close in”* on the zero of the function.

TECHNOLOGY  You can also use the zoom feature of a graphing utility to approx-

~imate the real Zeros of a continuous function. By repeatedly Zooming in on the peint
where the graph crosses the x-axis, and adjusting the x-axis scale, you can approx-
imate the zero of the function to any desired accuracy. The zero of B4+ 1is
approximately 0.453, as shown in Figure 1.38.
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Figure 1.38  Zooming inon the zero of f(x) = ¥ + 1x — 1

EXERCIS
In Exercises 1-6, use the graph to determine the limit, and In Exercises 7-24, find the limit (if it exists). 1f it does not exist,
discuss the continuity of the function. explain why.
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reises 9528, discuss the continuity of each function,

A
35}

2x, x
\48\1{(‘)#{ —4x+ 1, ¥x>»2

X

1 N
B BEEEY [tan D ] <1
49. f(x) =
w e
{Lsc el |\ — 3| <9
50. fx) = 6’
2, v —3| > 2
51. f("-) = ¢se 2x 52, f(\) = tan ?
53, f() =[x — 1] 54, flx} =3 =[]

%1 In Exercises 55 and 56, use a graphing utility to graph the
1 function. From the graph, estimate

lir{)l+ flx) and lim f(x).
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Is the function continuons on the entire real line? Explain.
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In Exercises 57-60, find the constants ¢ and 4 such that the
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In Exercises 61-64, discuss the continuity of the composite

- function i(x) = f{glx)).
Tin Exercises 33-54, find the x-values (if any) at which f is not () = 1))
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In Exercises 69-72, describe the interval(s) on which the
function is continuous.

70. flx) = xJ/x + 3

69. flx) = TZ—%T.

T v+ 1

72, flx) =- 7

HV Writing  In Exercises 73 and 74, use a graphing utility to graph

the function on the interval -4, 4]. Does the graph of the func-
tiop appear continuous on this interval? Is the function contin-
wous on [—4, 417 Write a short paragraph about the importance
of examining a function analytically as well as graphically.
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73, fl} =

Writing In Exercises 75-78, explain why the function has a
zero in the specified interval.

75, flx) = %.r" — x4+ 3, [1,2]

76. flx) = 2+ 3x — 2, [o, 1}

77. f(x) = x* — 2 —cOS X, fo, 1

78. f(x) = —%w tan(lg-), f1,3]

B In Exercises 79-82, use the Intermediate Value Theorem and a

graphing utility to approximate the zero of the function in the
interval [0, 1]. Repeatedly sy00m in” on the graph of the function
to approximate the zero accurate to two decimal places. Use the
root-finding capabilities of the graphing utility to approximate
{he zero accurate to four decimal places.

79. f(x) = Va1

80, f(x) = x* +3x -2

81, g(f) = 2cost — 3

82. hig)=1+8— Jtan @

In Exercises 83-86, verify that the Intermediate Value Theorem
applies to the indicated inferval and find the value of ¢ guaran-
teed by the theorem.

83, f() =x>+x— 1L 7 0,51, flo=1

84 floy =2 - 6x +8  [0.3) fl)=0

85, flx) =2 - +x— 2, (0,3, flay=4
86. f(x) = — B 4], floy=6

“Getting at the Concept *
7. State how continuity is destroyed at x = ¢ for each of the
following.

(a) ¥ (3] \0}

c

88. Describe the difference between a discontinuity that 15
removable and one that is nonremovable. [n your explana-
tion, give examples of the following.

(a) A function with a nonremovable discontinuity at x = 2.
(b) A function with a removable discontinuity at x = -2.

{(c) A function that has both of the characteristics described
in parts {4} and {b).

89. Sketch the graph of any tunction f such that
lim flx) =1 and lim flx) = 0.
-3t x—=3

Is the function continuous at x = 37 Explain.

90. 1f the tunctions f and g are continuous for allreal x,is [ + 8
always continuous for all real x? Is f/g always continuous
for all real x? If either is not continuous, give an example to
verify your conclusion.
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91. Think About It Describe how the functions flx) =3 + 01
and glx) = 3 — [—x] differ.




