

The limit of f(x) as x approaches 2 is 4. **Figure 1.15**

Example 8 Using the ε - δ Definition of a Limit

Use the ε - δ definition of a limit to prove that

$$\lim_{x \to 2} x^2 = 4.$$

Solution You must show that for each $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|x^2-4|<\varepsilon$$
 when $0<|x-2|<\delta$.

To find an appropriate δ , begin by writing $|x^2 - 4| = |x - 2||x + 2|$. For all x in the interval (1, 3), you know that |x + 2| < 5. So, letting δ be the minimum of $\varepsilon/5$ and 1, it follows that, whenever $0 < |x - 2| < \delta$, you have

$$|x^2-4|=|x-2||x+2|<\left(\frac{\varepsilon}{5}\right)(5)=\varepsilon$$

as shown in Figure 1.15.

than the ε - δ definition of a limit.

Throughout this chapter you will use the ε - δ definition of a limit primarily to prove theorems about limits and to establish the existence or nonexistence of particular types of limits. For *finding* limits, you will learn techniques that are easier to use

EXERCISES FOR SECTION 1.2

In Exercises 1–8, complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result.

1.
$$\lim_{x\to 2} \frac{x-2}{x^2-x-2}$$

x	1.9	1.99	1.999	2.001	2.01	2.1
f(x)						

2.
$$\lim_{x\to 2} \frac{x-2}{x^2-4}$$

x	1.9	1.99	1.999	2.001	2.01	2.1
f(x)						

3.
$$\lim_{x\to 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$$

x -0).1	-0.01	-0.001	0.001	0.01	0.1
f(x)		,			_	

4.
$$\lim_{x \to -3} \frac{\sqrt{1-x}-2}{x+3}$$

x	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9
f(x)	-					

5.
$$\lim_{x \to 3} \frac{[1/(x+1)] - (1/4)}{x-3}$$

ac .	2.9	2.99	2.999	3.001	3.01	3.1
f(x)						

A CONTRACTOR

6.
$$\lim_{x \to 4} \frac{[x/(x+1)] - (4/5)}{x-4}$$

x 3.9	3.99	3.999	4.001	4.01	4.1
f(x)	_	_			

7.
$$\lim_{x\to 0} \frac{\sin x}{x}$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)		-		<u>-</u>		

8.
$$\lim_{x\to 0} \frac{\cos x - 1}{x}$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						

9. $\lim_{x\to 3} (4-x)$

10.
$$\lim_{x \to 1} (x^2 + 2)$$

11.
$$\lim_{x \to 2} f(x)$$

$$12. \lim_{x \to 1} f(x)$$

$$f(x) = \begin{cases} x^2 + 2, & x \neq 1 \\ 1, & x = 1 \end{cases}$$

13.
$$\lim_{x\to 5} \frac{|x-5|}{x-5}$$

14.
$$\lim_{x\to 3} \frac{1}{x-3}$$

15.
$$\lim_{x \to \pi/2} \tan x$$

16.
$$\lim_{x\to 0} \sec x$$

17.
$$\lim_{x\to 0} \cos \frac{1}{x}$$

18.
$$\lim \sin \pi x$$

cities is \$0.75 for the first minute and \$0.50 for each additional minute. A formula for the cost is given by

55

$$C(t) = 0.75 - 0.50 [-(t-1)]$$

where t is the time in minutes.

(*Note*: [x] = greatest integer n such that $n \le x$. For example, [3.2] = 3 and [-1.6] = -2.

- (a) Use a graphing utility to graph the cost function for $0 < t \le 5.$
- (b) Use the graph to complete the table and observe the behavior of the function as t approaches 3.5. Use the graph and the table to find

 $\lim_{t\to 3.5} C(t).$

1	3	3.3	3.4	3.5	3.6	3.7	4
C				?			

(c) Use the graph to complete the table and observe the behavior of the function as t approaches 3.

1	2	2.5	2.9	3	3.1	3.5	4
c				?			

Does the limit of C(t) as t approaches 3 exist? Explain.

20. Repeat Exercise 19 if
$$C(t) = 0.35 - 0.12[-(t-1)]$$
.

21. The graph of f(x) = 2 - 1/x is shown in the figure. Find δ such that if $0 < |x - 1| < \delta$ then |f(x) - 1| < 0.1.

Figure for 21

Figure for 22

22. The graph of $f(x) = x^2 - 1$ is shown in the figure. Find δ such that if $0 < |x - 2| < \delta$ then |f(x) - 3| < 0.2.

In Exercises 23–26, find the limit L. Then find $\delta > 0$ such that |f(x) - L| < 0.01 whenever $0 < |x - c| < \delta$.

23.
$$\lim_{x\to 2} (3x + 2)$$

24.
$$\lim_{x \to 4} \left(4 - \frac{x}{2} \right)$$

25.
$$\lim_{x\to 2} (x^2 - 3)$$

26.
$$\lim_{x\to 5} (x^2 + 4)$$